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Amanda S. Guimarães, Lulu Wu, Junior Barrera, and Hugo A. Armelin

Abstract

We present in this article a methodology for designing kinetic models of molecular signaling networks,
which was exemplarily applied for modeling one of the Ras/MAPK signaling pathways in the mouse Y1
adrenocortical cell line. The methodology is interdisciplinary, that is, it was developed in a way that both dry
and wet lab teams worked together along the whole modeling process.
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1 Introduction

One of the current challenges of molecular cell biology is to unravel
mechanisms underlying molecular signaling pathways, especially in
the context of how extracellular signals propagate from cell surface
to cell nucleus, with implications in cell cycle control and ultimately in
cell fate. An important example of such signaling axes is the growth
factor-activated Rat sarcoma (Ras)/mitogen-activated protein kinase
(MAPK) cascade, which mediates a myriad of cellular processes, from
cell growth to proliferation and death [1]. To tackle this challenge,
intuitive navigations through static interactome maps are not suffi-
cient, since in cell signaling, it is necessary to know concentration
changes of involved chemical species along a given time frame. Thus,
designing kinetic models is essential in mechanistic studies of molec-
ular signaling networks. However, the modeling process involves a
sequence of complex procedures, and a single mistake at one of them
might yield an incorrect kinetic model. Moreover, the complexity of
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the kinetic model grows exponentially as a function of the number of
considered chemical species, rendering impossible manual fitting of
the model. Therefore, there is a need for a systematic approach to
design and simulate kinetic models of molecular signaling networks,
including the Ras/MAPK pathway.

In this work, we present an approach for designing kinetic mod-
els of molecular signaling networks, which was exemplarily applied
on the Ras/MAPK signaling pathway. This methodology is intrinsi-
cally interdisciplinary, in the sense that it combines in silico proce-
dures with biological experiments, i.e., both dry and wet lab teams
work together along the whole modeling process. Additionally, our
methodology associates classical approaches for modeling of bio-
chemical reactions [2] with original solutions at critical steps. Namely,
for optimal selection of chemical species in time-course experiments,
we systematically test different hypotheses involving relevant bio-
chemical reactions of the signaling pathway under focus. To carry
out these procedures, we developed and implemented a computa-
tional framework, which is available to the scientific community. Final-
ly, we illustrated the usage of present methodology applying it for
modeling one of the Ras/MAPK pathways in mouse Y1 adrenal
tumor cells stimulated by fibroblast growth factor 2 (FGF2), namely,
the Ras/MAPK pathway, whose MAPK component is composed of
isoforms of the extracellular signal-regulated kinase (ERK).

2 Materials

2.1 Experimental

Data

1. Mouse Y1 adrenocortical carcinoma cell line [3] was originally
obtained from the American Type Culture Collection in 1973
and kept frozen in liquid nitrogen ever since.

2. 60 mm cell culture plates.

3. Y1 culture medium: Dulbecco’s modified Eagle’s medium supple-
mented with 2 mM glutamine, 100 U/mL penicillin, 100 mg/
mL streptomycin, and 10% fetal calf serum.

4. Serum-free medium: Dulbecco’s modified Eagle’s medium sup-
plemented with 2 mM glutamine, 100 U/mL penicillin, and
100 mg/mL streptomycin.

5. Recombinant FGF2. 1 mg/mL stock solution in PBS pH 7.4.

6. RIPA lysis buffer: 150 mM NaCl, 1.0% Nonidet P-40, 0.5%
sodium deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0.

7. Halt protease and phosphatase inhibitor cocktail.

8. Eppendorf tubes.

9. Refrigerated microcentrifuge.

10. 10% SDS-PAGE gels.

11. Nitrocellulose membranes.
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12. SDS-PAGE apparatus.

13. TBS-T buffer: 150 mMNaCl, 50 mM Tris [pH 8.0], and 0.1%
Tween 20.

14. Nonfat dried milk.

15. Bovine serum albumin (BSA).

16. Rocker platform agitator.

17. Antibodies: phospho-ERK1/phospho-ERK2 (Thr202/Tyr204)
(#9101) and ERK1/ERK2 (#9102) from Cell Signaling, hypo-
xanthine-guanine phosphoribosyltransferase (HPRT) (sc-20975)
from Santa Cruz Biotechnology, and goat anti-rabbit peroxidase-
linked antibody (474-1506) from KPL.

18. SuperSignal West Pico Chemiluminescent Substrate.

19. G-LISA® Ras Activation Assay Biochem kit (BK131) from
Cytoskeleton.

20. Western blot imaging system: Uvitec Alliance 9.7 equipment.

21. Additional reagents and equipment for basic cell culture
techniques.

2.2 Retrieval of

Biological Knowledge

Values for the initial concentrations of the chemical species and/or
rate constants for the chemical reactions were obtained from the
literature, including repositories such as BioNumbers [4]. We ex-
tracted signaling pathway interactomes from databases such as Kyoto
Encyclopedia of Genes and Genomes (KEGG) [5]. Additionally, we
departed from an already formalized kinetic model, which can be
obtained from the BioModels database [6]. Formalized kinetic mod-
els can be used either alone or coupled with other models; in either
case, modifications in the initial model may also be applied according
to prior knowledge of the cellular system being modeled.

2.3 Computational

Tools

In order to design and adjust kinetic models to our experimental data,
we developed a computational framework called Signaling Network
Simulator (SigNetSim). This framework was coded in Python pro-
gramming language and can be used through a user-friendly web in-
terface [7]. In SigNetSim, we describe a kinetic model in the standard
Systems BiologyMarkup Language (SBML) format, which enables us
to reuse models that were already published and also to make easier
the usage of our models by other researchers. The web interface of
SigNetSim also includes a simple data repository, which can be used
either to simulate or to optimize models employing different experi-
mental conditions.

Rate constant adjustment of kinetic models is very demanding
in computational resources, since the search space being exponen-
tial on the number of rate constants. Hence, we implemented in
our framework an efficient simulated annealing algorithm [8]. This
algorithm, which was coded in C programming language, works in
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parallel and can be used easily on most modern computational
servers.

SigNetSim was used successfully for modeling the in vitro compe-
tition between the oxidized form of nicotinamide adenine dinucleotide
(NAD+) and telomeric sequences for the binding to glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) [9] and also for educational
purposes.

3 Methods

The outline of our modeling methodology is presented in Fig. 1.
There are six major procedures, which will be explained in details in
Subheadings 3.1–3.6. During this whole section, we will use as study
case the modeling of the Ras/ERK signaling pathway in Y1 cells.
These cells display constitutive high levels of active Ras, that is, Ras
bound to guanosine triphosphate (Ras-GTP), due to wild-type K-Ras
amplification and overexpression. Despite this, Ras-GTP levels can be
further increased by mitogen stimulation, and MAPK pathway activa-
tion remains fully dependent on such signaling [10–12]. Therefore,
we will be interested in obtaining a phenomenological model to ex-
plain the activation of ERK as a function of levels of Ras-GTP, which
in turn are modulated by stimulation of FGF2. To this end, we will
depart from the whole canonical Ras/MAPK signaling pathway as it
is described in Mus musculus MAPK pathway at KEGG database
(Fig. 2).

3.1 Selection of the

Involved Biochemical

Species and

Interactions

The first procedure is, given an interactome map, to select a mini-
mal set of chemical species whose kinetic interactions among them
might be sufficient to explain the observed phenomenon (see Note
1). In our example, we chose the three chemical species necessary
to propagate a signal from Ras-GTP to ERK: rapidly accelerated
fibrosarcoma (Raf), MAPK/ERK kinase (MEK), and ERK (Fig. 2,
proteins and interactions in bold) (seeNote 2). The remaining chem-
ical species that interact with them (e.g., Ras-GTP, phosphatases, etc.)
compose the inputs of our kinetic model and will be discussed in the
next subsections.

The next step is to define the biochemical reactions whose ki-
netics are relevant to the signal propagation through the signaling
pathway; they can be one of the following:

1. A first-order reaction, which may or not be reversible. This type
of reaction is used to describe, for instance, the binding of
a ligand to a receptor (e.g., FGF2 binding to its receptor,
FGFR) or the migration of a chemical species from one cell
compartment to another (e.g., phosphorylated ERK migrating
from cytosol to nucleus).
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2. A second-order reaction, which also may or not be reversible.
This type of reaction is useful to describe, for instance, the
association of two monomers, resulting in a protein dimer.

3. An enzymatic reaction, which can be described as a reversible
second-order reaction (enzyme binding to substrate, hence for-
ming an enzyme-substrate complex) coupled with an irreversible
first-order reaction (complex resulting in product and releasing
the enzyme). For instance, in our study case, the enzymatic
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Fig. 1 Fluxogram of the methodology presented in this paper. The equiangular and non-equiangular rectangles
represent, respectively, procedures and data, while the diamond denotes decision. The numbers between pa-
rentheses assign the major procedures that are described in details in Subheadings 3.1–3.6
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Fig. 2 Part ofMus musculusMAPK signaling pathway interactome, as it was described in KEGG database (map
4010, updated in January 18, 2016). This section of the interactome depicts the main signaling pathway, from
the binding of FGF2 to its receptor (FGFR), passing through the Ras small GTPase, and finally reaching the
cascade Raf-MEK-ERK (in bold)
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reaction that describes the activation of Raf by Ras-GTP (seeNote
3) is given by:

Ras‐GTPþ Raf k�1 $ k1Ras‐GTP‐Raf
! k1

catRas‐GTPþ Raf∗, ð1Þ
where k1 and k�1 are the rate constants of the formation of the
enzyme-substrate complex and the dissociation of the complex,
respectively, and k1

cat is the rate constant of the transformation of
substrate into product.

In the modeling of signaling pathways, cascade of kinases such
as MAPKs is mostly composed by a chain of enzymatic reactions.
Hence, coupled with the biochemical reaction depicted in Eq. 1, we
can describe the signal flow through the Raf-MEK-ERK system
with the following reactions:

P
0
ase1þRaf∗ k�2 $ k2 P

0
ase1‐Raf

∗ ! k2
cat P

0
ase1 þ Raf , ð2Þ

Raf∗ þMEK k�3 $ k3 Raf∗‐MEK
! k3

cat Raf∗ þ p‐MEK, ð3Þ
Raf∗ þ p‐MEK k�4 $ k4 Raf∗‐p‐MEK

! k4
cat Raf∗ þ pp‐MEK, ð4Þ

P
0
ase2 þ p‐MEK k�5 $ k5 P

0
ase2‐p‐MEK

! k5
cat P

0
ase2 þMEK, ð5Þ

P
0
ase2 þ pp‐MEK k�6 $ k6 P

0
ase2‐pp‐MEK

! k6
cat P

0
ase2 þ p‐MEK, ð6Þ

pp‐MEK þ ERK k�7 $ k7 pp‐MEK‐ERK
! k7

cat pp‐MEK þ p‐ERK, ð7Þ
pp‐MEK þ p‐ERK k�8 $ k8 pp‐MEK‐p‐ERK

! k8
cat pp‐MEK þ pp‐ERK, ð8Þ

P
0
ase3 þ p‐ERK k�9 $ k9 P

0
ase3‐p‐ERK

! k9
cat P

0
ase3 þ ERK, ð9Þ

P
0
ase3 þ pp‐ERK k�10 $ k10 P

0
ase3‐pp‐ERK

! k10
cat P

0
ase3 þ p‐ERK: ð10Þ

Having defined the set of biochemical reactions that describe
the kinetics of the signaling pathway, the next step is to establish a
mathematic description of the kinetics of these reactions.
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3.2 Kinetic Model

Definition and

Simplification

Among different possible mathematical formalisms, in our methodol-
ogy, we employ systems of ordinary differential equations (ODEs) (see
Note 4). Although we could map directly the biochemical reactions
of Eqs. 1–10 as a system of coupled ODEs (system S1.1 in [13]), at
this point we can resort to a model already available in the literature
to serve as “scaffold” in the modeling process. There is a myriad of
MAPK kinetic models in the literature [14]; for a comprehensive sur-
vey on MAPK kinetic models, refer to [15]. We started our modeling
with the classic MAPKmodel of Huang and Ferrell [16], whose most
of contemporary MAPK kinetic models stem from [15], complemen-
ted by the adoption of the quasi-steady-state (QSS) approximation
for Michaelis-Menten kinetics [17]. We show in Fig. 3 the set of re-
actions with the QSS approximation for the biochemical reactions of
Eqs. 1–10, which yields the following simplified system of ODEs:

d Raf½ �=dt ¼ k2
cat P

0
ase1

h i
Raf∗
� �

= K2m þ Raf∗
� �� �

� k1
cat Ras‐GTP½ � Raf½ �= K1m þ Raf½ �ð Þ ð11Þ

d Raf∗
� �

=dt ¼ k1
cat Ras‐GTP½ � Raf½ �= K1m þ Raf½ �ð Þ

� k2
cat P

0
ase1

h i
Raf∗
� �

= K2m þ Raf∗
� �� � ð12Þ

d MEK½ �=dt ¼ k5
cat P

0
ase2

h i
p‐MEK½ �= K5m þ p‐MEK½ �ð Þ

� k3
cat Raf∗
� �

MEK½ �= K 3m þ MEK½ �ð Þ ð13Þ
d p‐MEK½ �=dt ¼ k3

cat Raf∗
� �

MEK½ �= K3m þ MEK½ �ð Þ
� k4

cat Raf∗
� �

p‐MEK½ �= K4m þ p‐MEK½ �ð Þ
� k5

cat P
0
ase2

h i
p‐MEK½ �= K5m þ p‐MEK½ �ð Þ

þ k6
cat P

0
ase2

h i
pp‐MEK½ �= K6m þ pp‐MEK½ �ð Þ

ð14Þ
d pp‐MEK½ �=dt ¼ k4

cat Raf∗
� �

p‐MEK½ �= K4m þ p‐MEK½ �ð Þ
� k6

cat P
0
ase2

h i
pp‐MEK½ �= K 6m þ pp‐MEK½ �ð Þ

ð15Þ

d ERK½ �=dt ¼ k9
cat P

0
ase3

h i
p‐ERK½ �= K9m þ p‐ERK½ �ð Þ

� k7
cat pp‐MEK½ � ERK½ �= K7m þ ERK½ �ð Þ ð16Þ

d p‐ERK½ �=dt ¼ k7
cat pp‐MEK½ � ERK½ �= K7m þ ERK½ �ð Þ

� k8
cat pp‐MEK½ � p‐ERK½ �= K8m þ p‐ERK½ �ð Þ

� k9
cat P

0
ase3

h i
p‐ERK½ �= K9m þ p‐ERK½ �ð Þ

þ k10
cat P

0
ase3

h i
pp‐ERK½ �= K10m þ pp‐ERK½ �ð Þ

ð17Þ
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d pp‐ERK½ �=dt ¼ k8
cat pp‐MEK½ � p‐ERK½ �= K8m þ pp‐ERK½ �ð Þ

� k10
cat P

0
ase3

h i
pp‐ERK½ �= K 10m þ pp‐ERK½ �ð Þ

ð18Þ

Once QSS approximation was also applied in a model of Kho-
lodenko [18], we adopted some of the rate constants and initial
concentrations that were used in that model (Tables 1 and 2). Final-
ly, we added a reaction representing the activation of Raf by Ras-
GTP, with unknown rate constants. Remark that during a kinetic
model simulation, the value of [Ras-GTP] is updated for each ex-
perimental data point; hence Ras-GTP levels actually compose the
main input of the model whose kinetics is described by the system
of ODEs in Eqs. 11–18.

3.3 Selection of

Chemical Species for

Time-Course

Measurements

This procedure is critical in the modeling process, since it has im-
pact on the outcome of the model-fitting optimization (Subhead-
ing 3.5). Thus, in order to select the chemical species whose time-
course measurements would be more informative to adjust the rate
constants of the model, we employ the mass conservation algebraic
relations to replace some of the ODEs of the system, hence obtain-
ing a system of differential-algebraic equations (DAEs). For in-
stance, for the set of biochemical reactions depicted in Fig. 3, we
have the following mass conservation equations (see Note 5):

Raf½ �0 ¼ Raf½ � þ Raf∗
� � ð19Þ

MEK½ �0 ¼ MEK½ � þ p‐MEK½ � þ pp‐MEK½ � ð20Þ
ERK½ �0 ¼ ERK½ � þ p‐ERK½ � þ pp‐ERK½ � ð21Þ

where [Raf]0, [MEK]0, and [ERK]0 are the total concentration of
Raf, MEK, and ERK proteins, respectively, along the whole bio-
logical experiment. Using the equations in Eqs. 19–21, we can make
different removals of ODEs from the system of Eqs. 11–18: for in-
stance, with Eq. 20, we can remove the differential equation that de-
scribes the kinetics of [MEK], or [p-MEK], or [pp-MEK] (see Note
6). Using this strategy, we do not need to measure chemical species
whose values along time can be obtained through the algebraic rela-
tions, since those species can be derived from these algebraic relations.
After verifying different possibilities of substitution (see Note 7), we
obtain the following system of DAEs:

Raf½ � ¼ Raf½ �0 � Raf∗
� � ð22Þ

d Raf∗
� �

=dt ¼ k1
cat Ras‐GTP½ � Raf½ �= K1m þ Raf½ �ð Þ

� k2
cat P

0
ase1

h i
Raf∗
� �

= K2m þ Raf∗
� �� � ð23Þ

462 Marcelo S. Reis et al.



d MEK½ �=dt ¼ k5
cat P

0
ase2

h i
p‐MEK½ �= K5m þ p‐MEK½ �ð Þ

� k3
cat Raf∗
� �

MEK½ �= K 3m þ MEK½ �ð Þ ð24Þ
p‐MEK½ � ¼ MEK½ �0 � MEK½ � � pp‐MEK½ � ð25Þ

Table 1
Rate constants of the two models of Ras/ERK pathway in Y1 cells that are presented in this paper

Rate constant
Value before optimization
(bad and good fitting)

Adjusted value
(bad fitting)

Adjusted value
(good fitting)

k1
cat N/A 0.00446 0.585

K1m N/A 3.99 1.19e�06

V2 0.25 0.25 0.25

K2m 8 8 8

k3
cat 0.025 0.025 0.025

K3m 15 15 15

k4
cat 0.025 0.025 0.025

K4m 15 15 15

V5 0.75 0.75 0.75

K5m 15 15 15

V6 0.75 0.75 0.75

K6m 15 15 15

k7
cat 0.025 0.025 0.025

K7m 15 15 15

k8
cat 0.025 0.025 0.025

K8m 15 15 15

V9 0.5 0.5 0.5

K9m 15 15 15

V10 0.5 0.5 0.5

K10m 15 15 15

k11
cat N/A N/A 10.8

K11m N/A N/A 3.45

In both models, the same initial values were used before the curve-fitting optimization; however, the final adjusted values of

the rate constants are slightly different betweenmodels. All Michaelis constants units are in nM. The catalytic rate constants

(k1
cat, k3

cat, k4
cat, k7

cat, k8
cat, k11

cat) and the maximal enzyme rates (V2, V5, V6, V9, V10) units are in s�1 and nM/s,
respectively
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d pp‐MEK½ �=dt ¼ k4
cat Raf∗
� �

p‐MEK½ �= K4m þ p‐MEK½ �ð Þ
� k6

cat P
0
ase2

h i
pp‐MEK½ �= K 6m þ pp‐MEK½ �ð Þ

ð26Þ

d ERK½ �=dt ¼ k9
cat P

0
ase3

h i
p‐ERK½ �= K9m þ p‐ERK½ �ð Þ

� k7
cat pp‐MEK½ � ERK½ �= K7m þ ERK½ �ð Þ ð27Þ

Ras-GTP

kcat
1 , K1m

Raf Raf∗

P′ase1

kcat
2 , K2m kcat

3 , K3m

kcat
4 , K4m

MEK p-MEK pp-MEK

P′ase2

kcat
5 , K5m

kcat
6 , K6m

ERK p-ERK pp-ERK

kcat
7 , K7m

kcat
8 , K8m

P′ase3
kcat
9 , K9m kcat

10 , K10m

Fig. 3 Our initial hypothesis for the set of biochemical reactions that describe the signal flow through the Raf-
MEK-ERK cascade in Y1 cells. Once we applied the QSS approximation to all reactions, each one is ac-
companied by its respective value of catalytic constants (ki

cat) and of Michaelis constant (Kim)

Table 2
Initial concentrations of the two models of Ras/ERK pathway in Y1 cells that were presented in this
paper

Chemical species Initial concentration (nM)

Ras-GTP 40

Raf 82

Raf* 18

MEK 272

p-MEK 20

pp-MEK 8

ERK 288

p-ERK 9

pp-ERK 3

In both models, the same initial values were used. All the initial concentrations are given in nM
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p‐ERK½ � ¼ ERK½ �0 � ERK½ � � pp‐ERK½ � ð28Þ
d pp‐ERK½ �=dt ¼ k8

cat pp‐MEK½ � p‐ERK½ �= K8m þ p‐ERK½ �ð Þ
� k10

cat P
0
ase3

h i
pp‐ERK½ �= K 10m þ pp‐ERK½ �ð Þ:

ð29Þ
Once both pp-MEK and pp-ERK still had their respective kinet-

ics described by differential equations, we chose to measure phos-
phorylated ERK, since this protein is at the bottom of the kinase
cascade and is also the “output” of this system.

3.4 Production

and Normalization

of Time-Course

Measurements

As it was showed in the previous section, we decided to produce
time-course measurements for Ras-GTP (as the main input of the
system) and for phosphorylated ERK (as the dependent variable to
be adjusted). For both chemical species, we carried out time-course
assays and data posttreatment. Those assays were performed for
time points within the first 30 min after the stimulation of starved
Y1 cells by FGF2; we focused on this time frame because, in our
study case, we are interested in modeling the biochemical events
that rely on post-translational modifications only (e.g., phosphoryla-
tion), without the gene regulatory effects that are eventually caused
by ERK activation.

3.4.1 Ras-GTP Enzyme-

Linked Immunosorbent

Assay (ELISA)

1. Plate cells at 50% confluence in 60 mm cell culture plates using
Y1 culture medium and let to adhere overnight.

2. Wash cells twice with PBS and starve in serum-free medium for
48 h.

3. Stimulate starved cells with 10 ng/mL FGF2 for the indicated
times.

4. For harvesting, discard culture medium, wash cells twice with
5 mL of 4 �C PBS, and apply 250 μL of RIPA buffer with pro-
tease inhibitor cocktail and place the plate on ice (see Note 8).

5. For cell lysis, scrape the cells from the entire plate, homogenize
pipetting up and down, and transfer to Eppendorf tubes pre-
chilled in ice (see Note 8).

6. Centrifuge cell lysates at 20,000 � g for 10 min at 4 �C to
remove debris.

7. Probe Ras-GTP levels using G-LISA® Ras Activation Assay
Biochem kit according to the manufacturer’s protocol.

3.4.2 Ras-GTP

Time-Course Data

Normalization

1. Normalize Ras-GTP data replicates using the average signal
strength of each replicate.

2. Once the Ras-GTP assay does not yield absolute quantification,
we formulate a hypothesis assuming the peak level as full Ras
activation (seeNote 9). In Table 3, we summarize the Ras-GTP
time-course experiment produced and normalized.
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3.4.3 Phosphorylated

ERK Western Blot Assay

1. Prepare cell lysates for Western blot assays exactly as described
for Ras-GTP ELISA.

2. Remove debris and load 50 μg of each sample for Western blot
experiments.

3. Carry out Western blots following the standard protocol [19].
Briefly, supernatant aliquots of proteins were resolved by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE;
10% acrylamide/bis-acrylamide) and transferred onto nitrocel-
lulose membranes. Membranes were blocked for 1 h in TBS-T
buffer containing 5% nonfat dried milk.

4. Wash the membrane three times of 5 min each with TBS-Ton a
rocker platform agitator.

5. Incubate overnight with primary antibodies at 1:2000 dilution
in TBS-T buffer containing 5% BSA on a rocker platform agi-
tator at 4 �C.

6. Wash the membrane three times of 10 min each with TBS-Ton
a rocker platform agitator.

7. Incubate with goat anti-rabbit peroxidase-linked secondary
antibody at 1:10,000 in TBS-T buffer for 1 h on a rocker plat-
form agitator.

8. Wash the membrane three times of 5 min each with TBS-Ton a
rocker platform agitator.

9. Remove the TBS-T and apply chemiluminescent substrate to
membranes.

10. Produce the Western blot images (Fig. 4a) using a Western blot
imaging system.We usedUvitec Alliance 9.7 equipment. Choose
automatic exposure setting (see Note 10).

Table 3
Quantification values of Ras-GTP ELISA time-course experiments

Raw value (avg) Active Ras (%) Concentration (nM)

Starved 0.0976 0.1215 0.45

0.50 0.2214 0.2756 91.76

10 0.1879 0.2338 77.85

30 0.8036 1.0000 333.00

50 0.5367 0.6679 222.41

150 0.4237 0.5273 175.60

300 0.1649 0.2052 68.34

We estimated the proportion of Ras-GTP to total Ras under the assumptions stated in Subheading 3.4, yielding these

concentration values in nM
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11. Background-subtract and quantify Western blot bands using
the Uvitec Alliance 9.7 equipment software, with quantifica-
tion values given in arbitrary units (see Note 11).

12. Perform data posttreatment through data normalization rela-
tive to each lane of the Western blot. For this purpose, use the
housekeeping protein HPRT as a loading control for each lane.

3.4.4 Phosphorylated

ERK Time-Course Data

Normalization

1. Use the same method as Ras-GTP to normalize data replicates.

2. Use the samemethod as Ras-GTP to convert quantification val-
ues to concentrations, also using the hypothesis of a maximum
activation. The final result of phosphorylated ERK time-course
normalization is showed in Table 4.

Fig. 4 (a) Time-course Western blot assays of total ERK and phosphorylated ERK, where starved Y1 cells were
stimulated with FGF2 and time points were collected for up to half hour; HPRT was used as loading. (b)
Quantifications for phosphorylated ERK in Western blot assays showed in (a) (blue line) and also for Ras-GTP in
ELISA assays (orange line)

Table 4
Quantification values of ERK and phosphorylated ERK Western blot time-course experiments

Raw value
Loading
(HPRT) Adjusted lane value Active ERK (%) Concentration (nM)

Starved 4,595,873 18,110,349 4,595,873 3.85 11.54

0.50 4,588,951 27,392,596 3,033,940 2.54 7.62

10 7,308,672 18,640,216 7,100,916 5.94 17.83

30 67,940,866 22,494,710 54,698,762 45.79 137.36

50 62,105,113 22,135,022 50,812,928 42.53 127.60

150 17,370,964 30,109,232 10,448,431 8.75 26.24

300 18,552,417 21,861,616 15,368,980 12.86 38.59

For each time point, the raw [phosphorylated ERK] value was adjusted by the loading protein quantification (HPRT),

and its proportion in respect to [total ERK] was estimated using additional data from our lab. Finally, these values were
given in nM
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3.5 Model-Fitting

Optimization

In this procedure, the first step is to prepare the model according to
the experimental data. Once the antibody used for ERK quantifica-
tion targets both single- and double-phosphorylated states, we need
a variable representing this specific target. Hence, we added an ad-
ditional species to the model, whose value is the sum of [p-ERK] and
[pp-ERK] (Fig. 4b, blue line). We will then use this variable when
comparing with the experimental data. Additionally, once the phos-
phatases are considered constant in our model, we decided to use the
maximum enzyme rate defined as:

V ¼ kcat Phosphatase½ � ð30Þ

for all right-side terms in the system of DAEs which involve a
phosphatase. By doing this, we create classes of equivalence among
pairs of hcatalytic rate, [Phosphatase]i, which relieves the optimiza-
tion process through the reduction of the number of variables to be
fitted. This procedure is acceptable, since the phosphatases are trea-
ted in our kinetic model as constant inputs of the system.

Finally, last missing pieces of our model are the unknown rate con-
stants for Raf activation by the Ras-GTP time-course input (Fig. 4b,
orange line) and also for the negative feedback. We used model-fitting
optimization to search for values of these unknown parameters for
which the model could reproduce the experimental data. The basic
method to perform optimizations consists in varying parameter values
and selecting those for which the model is the closest to the experi-
mental data. When no better parameter values can be found, then the
best set of parameters is returned. Once we did not have any initial
guess for these parameters, we decided to give loose bounds to the
optimization for them, with values 1e�4 and 1e+8 for the catalytic
constants (ki

cat) and 1e�8 and 1e+4 for Michaelis constants (Kim),
respectively, for Raf activation and the negative feedback (seeNote 12).

3.6 Test of

Alternative Hypotheses

Once our experimental data showed a transient activation of the
MAPK cascade, we could not reproduce the observed data without
a mechanism to shut down ERK (Fig. 5). When this occurs during
the modeling process, it might suggest us the model misses relevant
components of the system. Through research on the literature and
also on biological databases (seeNote 13), we discovered that it was
reported that a negative feedback from activated ERK is responsible
to dephosphorylate and thus to deactivate Raf [20]. Therefore, we
included a new reaction into the set of reactions of Eqs. 1–10 (Fig. 6),
which describes a negative feedback:

pp‐ERK þ Raf∗ k�11 $ k11 pp‐ERK‐Raf∗

! k11
cat pp‐ERK þ Raf , ð31Þ
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and repeated the procedures described in Subheadings 3.2 and 3.3,
hence obtaining the following system of DAEs:

Raf½ � ¼ Raf½ �0 � Raf∗
� � ð32Þ

d Raf∗
� �

=dt ¼ k1
cat Ras‐GTP½ � Raf½ �= K1m þ Raf½ �ð Þ

� k2
cat P

0
ase1

h i
Raf∗
� �

= K2m þ Raf∗
� �� �

� k11
cat pp‐ERK½ � Raf∗� �

= K11m þ Raf∗
� �� � ð33Þ

Fig. 5 Result of the model fitting for the first version of the model. Left, starved cells; right, cells stimulated
with FGF2. While the fitting was able to adjust the model for starved cells, it lacks the ability to reproduce the
transient response upon FGF2 stimulation

Ras-GTP

kcat
1 , K1m

Raf Raf∗

P′ase1

kcat
2 , K2m kcat

3 , K3m

kcat
4 , K4m

MEK p-MEK pp-MEK

P′ase2

kcat
5 , K5m

kcat
6 , K6m

ERK p-ERK pp-ERK

kcat
7 , K7m

kcat
8 , K8m

P′ase3
kcat
9 , K9m kcat

10 , K10m

kcat
11 , K11m

negative feedback

Fig. 6 A new hypothesis for the set of biochemical reactions that describe the signal flow through the Raf-
MEK-ERK cascade in Y1 cells. A negative feedback reaction from pp-ERK to Raf*, with its respective catalytic
constant and Michaelis constant, was included into the model
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d MEK½ �=dt ¼ k5
cat P

0
ase2

h i
p‐MEK½ �= K5m þ p‐MEK½ �ð Þ

� k3
cat Raf∗
� �

MEK½ �= K 3m þ MEK½ �ð Þ ð34Þ
p‐MEK½ � ¼ MEK½ �0 � MEK½ � � pp‐MEK½ � ð35Þ

d pp‐MEK½ �=dt ¼ k4
cat Raf∗
� �

p‐MEK½ �= K4m þ p‐MEK½ �ð Þ
� k6

cat P
0
ase2

h i
pp‐MEK½ �= K 6m þ pp‐MEK½ �ð Þ

ð36Þ

d ERK½ �=dt ¼ k9
cat P

0
ase3

h i
p‐ERK½ �= K9m þ p‐ERK½ �ð Þ

� k7
cat pp‐MEK½ � ERK½ �= K7m þ ERK½ �ð Þ ð37Þ

p‐ERK½ � ¼ ERK½ �0 � ERK½ � � pp‐ERK½ � ð38Þ
d pp‐ERK½ �=dt ¼ k8

cat pp‐MEK½ � p‐ERK½ �= K8m þ p‐ERK½ �ð Þ
� k10

cat P
0
ase3

h i
pp‐ERK½ �= K 10m þ pp‐ERK½ �ð Þ:

ð39Þ
Once just the ODE corresponding to Raf* kinetics (Eq. 33)

changed when compared with the system of DAEs of Eqs. 22–29,
both pp-MEK and pp-ERK remained in the ODEs, which implies
that new time-course measurements (Subheading 3.4) were not
necessary. To carry out the curve-fitting optimization (Subheading
3.5), the rate constants introduced into the system by this feedback
(k11

cat andK11m) were also considered unknown. After a new round
of fitting, we could produce a model whose simulation has good
agreement with experimental data (Fig. 7); the adjusted rate

Fig. 7 Result of the model fitting for the second version of the model, including pp-
ERK negative feedback on Raf*. Left, starved cells; right, cells stimulated with FGF2.
While still being able to adjust themodel for the starved condition, the addition of the
negative feedback enables the model to also reproduce the transient response
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constants and initial conditions that were used to execute this simu-
lation are showed in Tables 1 and 2.

4 Notes

1. This “bottom-up” approach is preferable than to start from a
more comprehensive set of chemical species, since the size of the
system identification problem is proportional to the size of such
set, which has implications both in the model-fitting optimiza-
tion problem (making the search space too large) and in the
estimation problem (lack of data to estimate a large number of
rate constants).

2. For modeling purposes, we must decide whether different
protein isoforms should be considered or not. This decision is
critical and must be made together with the wet lab team, since
measurements for the time-course experiments might not have
specificity for distinguishing each isoform. In our example, an-
tibodies for phosphorylated ERK do not distinguish between
the isoforms 1 and 2 of this kinase.

3. Although Ras is not a kinase, its interaction with Raf is necessary
to allow its activation through phosphorylation [21]. However,
for the sake of model simplicity, we assume that (1) [Ras-GTP]
levels are proportional to the Raf activation and (2) recruitment
of Raf to the membrane by active Ras is a very fast reaction;
hence it can be approximated as an instantaneous event.

4. We can adopt systems of ODEs to describe the kinetics of the
signaling pathway if two conditions hold: (1) the concentration
levels of the involved chemical species are high enough (i.e., we
can describe a chemical species as a continuous variable) and (2)
there is low uncertainty due to noise (i.e., we can consider the
kinetics of these species a deterministic phenomenon). If (1)
does not hold, one should consider the usage of a discrete mod-
el (e.g., a Boolean model). If (2) does not hold, stochastic ap-
proaches should be employed instead.

5. The mass conservation algebraic equations of a given set of
biochemical reactions might be more complicated to be extracted
than the ones of our study case, depending on the size of the set
and also how intertwined are these reactions. Moreover, once
there are different possible sets of mass conservation algebraic
equations, it is useful to apply computational techniques to
obtain the largest possible set of equations that are linearly
independent (i.e., nonredundant equations) [22].

6. We must choose a system of DAEs which minimizes the num-
ber of ODEs while keeping in ODEs all the chemical species
whose time-course experiments are feasible. We call such
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system of DAEs as optimal. In our case, an optimal system of
DAEs always contains [p-MEK] and [p-ERK], both with feasi-
ble time-course experiments.

7. For small models like the one of our study case, an exhaustive
search for an optimal system of DAEs is feasible. However, the
search space grows exponentially as a function of the model
size. Therefore, for larger models the optimal system of DAEs
should be searched through a procedure such as the classical
branch-and-bound algorithm [23].

8. For all cell lysates, keep the samples in the ice all the time and
make the manipulation as fast as possible, especially for Ras-
GTP assays, given the intrinsic hydrolytic activity of Ras.

9. Once Ras-GTP is only present in one enzymatic reaction in our
model and with unknown catalytic constant, we can choose an
arbitrary value for this peak of activation. The value of this un-
known parameter will be adjusted by the model-fitting opti-
mization procedure (Subheading 3.5), thus making only the
pattern of activation important. Hence, we decided to choose
the hypothesis of a full Ras activation, enabling us to estimate the
concentration for this data point and then to extrapolate the
concentration of the remaining data points of our experiment.

10. Automatic exposition should be used for acquiring Western
blot images to avoid overexposure of signals.

11. We made alternative quantifications for all Western blot experi-
ments using the Image J software [24]; however, despite differ-
ences on the absolute values, no significant difference on the
relative values was observed.

12. An important pitfall about optimization, especially when you
have no initial guess about some rate constants, is to find a
stable point for the optimization start from. Especially in cases
where we are dealing with Michaelis-Menten quasi-stationary
(QS) or QSS approximations, some ranges of parameters pro-
vide unstable values, which can prevent the optimizer to work.
Therefore, choosing the bounds for the parameter values is also
a delicate exercise, especially working with enzymatic kinetics
whose rate constants can vary a lot. Therefore, the optimization
process will be increasingly more complicated with very loose
bounds. A way to deal with this trade-off is to execute several
optimizations, with increasingly loose bounds, until finding a
satisfactory result.

13. For small models like our study case, we can test some hypoth-
eses for the network topology in a manual fashion. However,
for larger models the space of hypotheses grows exponentially
on the model size. One way to tackle this problem is to carry
out the steps of Subheadings 3.1–3.3 and 3.5–3.6 in an auto-
mated fashion, using a first iteration of the methodology to
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produce a set of time-course data (through the procedure of
Subheading 3.4). Within the SigNetSim framework, we imple-
mented such automation using interactome databases such as
KEGG to generate a list of chemical species and reactions that
are candidates to be included into the kinetic model and a
greedy search algorithm to select and assess them in a combi-
natorial way [25].
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cent Noël contributed equally to this work.

References

1. Seger R, Krebs EG (1995) The MAPK signal-
ing cascade. FASEB J 9(9):726–735

2. Chen WW, Niepel M, Sorger PK (2010) Classic
and contemporary approaches to modeling bio-
chemical reactions. GenesDev 24(17):1861–1875

3. Yasumura Y, Buonassisi V, Sato G (1966)
Clonal analysis of differentiated function in
animal cell cultures. I. Possible correlatedmain-
tenance of differentiated function and the dip-
loid karyotype. Cancer Res 26:529–535

4. Milo R, Jorgensen P, Moran U, Weber G,
Springer M (2010) BioNumbers – the database
of key numbers in molecular and cell biology.
Nucleic Acids Res 38(1):D750–D753

5. Kanehisa M, Susumu G (2000) KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic
Acids Res 28(1):27–30

6. Le Novère N, Bornstein N, Broicher A et al
(2006) BioModels database: a free, centralized
database of curated, published, quantitative
kinetic models of biochemical and cellular sys-
tems. Nucleic Acids Res 34(1):D689–D691
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