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Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems
biology. Among the applications of this method, one of the most important is the cell cycle regulation.
The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth,
spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations
induced by post-translational modifications. The advancement through the cell cycle comprises a
well defined sequence of stages, separated by checkpoint transitions. The combination of continuous
and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a
piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth
biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and
binary event location functions, is based on learning from a training set of trajectories of the smooth
model. We discuss several learning strategies for the parameters of the hybrid model.

1 Introduction

Systems biology employs a large number of formalisms to represent the dynamics of biochemically
interacting molecules in signal transduction, metabolic and gene regulatory networks. Some of these
formalisms, such as the systems of ordinary differential equations (ODE), are based on continuous rep-
resentations of the phase space, whereas others, such as boolean networks, employ discrete dynamical
variables. New approaches, based on hybrid models and using both continuous and discrete variables,
are emerging as alternative descriptions of biochemical networks.

Hybrid modelling allows a good compromise between realistic description of mechanisms of regu-
lation and the possibility of testing the model in terms of state reachability and temporal logics [12, 13].
Threshold dynamics of gene regulatory networks [2, 21] or of excitable signaling systems [24] has been
modelled by piecewise-linear and piecewise-affine models. These models have relatively simple structure
and can, in certain cases, be identified from data [19, 8]. Some methods were proposed for computing
the set of reachable states of piecewise affine models [3].

The use of hybrid models in systems biology is justified when some events, such as rapid protein
modifications occur on very short time scales and produce significant changes of the systems dynamics.
The regulatory machinery of the cell cycle of eukaryotic organisms provides a remarkable example of
such a situation. Indeed, the advancement through the cell cycle consists of a well defined sequence of
stages, separated by checkpoint transitions. During each one of this stages, different sets of dynamical
variables and biochemical reactions are specifically active, and change from one stage to another. A
hybrid model of mammalian cell cycle has been previously proposed by Tyson’s group [23]. This model
is based on a Boolean automaton whose discrete transitions trigger changes of kinetic parameters in a
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set of ODEs. The construction method is ad hoc and therefore difficult to generalize. Similar hybrid cell
cycle models can be found elsewhere [1].

Recently, we have proposed a hybridization method for systematically deriving hybrid models from
smooth ODE models [16, 17]. In this method, non-linear reaction rate functions of biochemical reactions
are approximated by simpler, piecewise linear functions. The hybrid model contain new parameters that
can be estimated by a combination of linear programming and least squares optimization. In this paper
we discuss an application of the method to a medium size cell cycle model. Our method has some
similarities to the method proposed in [10] to learn hybrid models from action potentials, but there are
also differences, such as the definition of the modes and of the mode switching, and the optimization
scheme.

2 Piecewise smooth hybrid models

We consider piecewise smooth hybrid dynamical systems (HDS) for which the continuous variables, u,
satisfy the equations

dui

dt
=

Ni

∑
k=1

skPik(u)+P0
i (u)−

Mi

∑
l=1

s̃lQil(u)−Q0
i (u),

s j = H( ∑
k∈C j

w jkuk−h j), s̃l = H( ∑
k∈C̃l

w̃lkuk− h̃l), (1)

where H is the unit step function H(y) = 1, y ≥ 0, and H(y) = 0, y < 0, Pik,P0
i ,Qil,Q0

i are positive,
smooth functions of u representing production, basal production, consumption, and basal consumption,
respectively. Here w, w̃ are matrices describing the interactions between the u variables, i= 1,2, ...,n, j =
1,2, ...,N, l = 1, ...,M and h, h̃ are thresholds, and C j, C̃l are indices subsets corresponding to continuous
variables controlling the discrete variables.

One will usually look for solutions of the piecewise-smooth dynamics (1) such that trajectories of
u are continuous. However, we can easily extend the above definitions in order to cope with jumps
of the continuous variables. Similarly to impact systems occurring in mechanics [7], the jumps of the
continuous variables can be commanded by the following rule: u instantly changes to p±j (u) whenever
a discrete variable ŝ j = H(∑k∈Ĉ j

ŵ jkuk− ĥ j) changes. The ± superscripts correspond to changes of ŝ j

from 0 to 1 and from 1 to 0, respectively. We can consider reversible jumps in which case the functions
p±j (u) satisfy p+ ◦p− = Id. The typical example in molecular biology is the cell cycle. In this case, the
command to divide at the end of mitosis is irreversible and corresponds to p+

j (u) = u/2. No return is
possible, p−j (u) = u.

The class of models (1) is too general. We will restrict ourselves to a subclass of piecewise smooth
systems where smooth production and degradation terms are assumed multivariate monomials in u, plus
some basal terms that we try to make as simple as possible. A system with constant basal production and
linear basal consumption is the following:
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Multivariate monomial rates represent good approximations for nonlinear networks of biochemical
reactions with multiple separated timescales [20, 9]. Such examples are abundant in chemical kinetics.
For instance, Michaelis Menten, Hill, or Goldbeter-Koshland reactions switch from a saturated regime
where rates are constant to a small concentration regime where rates follow power laws. The definition of
the rates reminds that of S-systems, introduced by Savageau [22]. Finally, as discussed in [14] monomial
approximations occur naturally in “tropically-truncated” polynomial systems, ie in systems where poly-
nomial or rational rate functions are replaced by a few dominating monomials. As compared with our
previous work [14, 18], in this paper we use the tropicalization only heuristically to obtain simpler reac-
tion kinetic laws, whose parameters are then fitted. The switching of the monomial terms is not given by
the max-plus rule as in [14, 18], but is commanded by thresholding functions depending on parameters
to be fitted. This allows for more flexibility and corrects the errors introduced by the tropicalization.

3 Hybridization of the generic mammalian cell cycle model

This model has been proposed by the group of Tyson [5] and is designed to be a generic model of the
cell cycle for eukaryotes. The cell cycle being an old, but important system that evolved, there have to
be homologies, i.e. common mechanisms shared by the cell cycle regulation of all eukaryotes. The goal
of this model is to bring to light these mechanisms, while producing models that reproduce experimental
results. Four different eukaryotic organisms were modelled : budding yeast, fission yeast, Xenopus
embryos, and mammalian cells. For each of theses organisms, a set of parameters is provided. By
changing parameter sets, one can activate or deactivate some modules, fine tune some mechanisms, in
order to reproduce the behaviour of the cell cycle in the chosen organism.

We analyse here only the model describing mammalian cells. This model uses twelve variables
(eleven of them being concentrations of proteins, and one being the mass of the cell) and forty reactions.
We briefly discuss the steps of the algorithm applied to this model.

Choice of the hybrid scheme. Five of these reactions are typically switch-like, following Goldbeter-
Koshland kinetics, defined as follows:

GK(v1,v2,J1,J2) =
2v1J2

B+
√

B2−4(v2− v1)v1J2
, (3)

with B = v2− v1 + J1v2 + J2v1.
These kinetics describe a steady-state solution for a 2-state biological system, meaning that this

reaction will have two basics modes : active or inactive. These reactions are replaced by switched
reactions whose rates are simplified monomial rates multiplied by a boolean variable.

For instance the reaction that produces Cyclin-B, induced by the cell mass, has the following kinetic
rate:

R = ksbpp [Mass]GK(kafb [CycB],kifb,Jafb,Jifb) (4)

In this case we replace the Goldbeter-Koshland (GK) function by a step function and obtain the
following simpler rate:

R′ = k′ [Mass]s, (5)

where s is a boolean variable.
We apply the same method for all the five GK reactions of the model. The original and hybridized

reaction rates can be find in the Table 2.1.
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Figure 1: Flux and derivative of the flux for the Goldbeter-Koshland reaction R4. The shaded areas
correspond to value where the inequation v1 > v2 is true.

Another set of reactions reactions we want to modify in this model are Michaelis-Menten (MM)
reactions. We want to reproduce the two functioning modes of Michaelis-Menten kinetics, namely the
linear and the saturated behaviour. The linear behaviour is observed when the substrate is in low supply.
In this case, the flux of the MM reaction will be linear with respect to the substrate supply. The saturated
behaviour is observed when the substrate supply is in excess, and produce a constant flux. Our goal is to
obtain a hybrid reaction which switches between these two modes, controlled by boolean variables.

There are ten such reactions within this model. A classic MM reaction rate would be the following :

MM(X) =
k.X

X + km
, (6)

and we propose to replace it by the following reaction :

MM(X) = s.k′+ s̃.k′′.X , (7)

where s is a boolean variable, and s̃ is the complementary of s.
We apply this transformation to all the Michaelis-Menten reactions. The original and hybridized

reaction rates can be found in the Table 2.1.
Detection of the transitions. Static event locations follow from the positions of sharp local maxima

and minima of the derivatives of the reactions rates with respect to time (these correspond to sharp local
maxima and minima of the second derivatives of the species concentrations, with respect to time). We
have checked numerically that in the case of GK functions, these positions are close to the solutions of
the equation v1 = v2. This property follows from the sigmoidal shape of the GK regulation functions.
It is indeed well known that GK sigmoidal functions have an inflexion point defined by the condition
v1 = v2, when the activation and inhibition input rates are equal. If the case of MM functions, these
positions are close to the solutions of the equation X = km.
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Figure 2: Flux and derivative of the flux for the Michaelis-Menten reaction R10. The shaded areas
correspond to value where the inequation X > km is true.

These findings are illustrated in Figs. 1,2. We can deduce the value of the boolean variables by
checking the inequation v1 > v2 in the GK case, and X > km in the MM case. We can observe that the
change of the result of these inequations corresponds to the maxima and minima of the derivative (Fig.
1 and Fig. 2).

The structure of the model can be used to reduce the number of boolean control variables. In the
case of reactions R11,12 or R13,14,15, we can see looking at reaction rates in the Table 2.1 that the
inequations controlling their behavior should be the same. Thus, we can use the same boolean variable
to control these reactions. Furthermore, we found out while looking for these transitions that for some
MM reactions these transitions do not occur along the limit cycle trajectories. In the case of reactions R7
and R9, the behaviour is always saturated. We chose not to represent these reactions as hybrid (switched)
reactions, and represented only their saturated behaviour.

We can use these inequalities and hybrid model description to fit parameters of the hybrid model in
one of three ways :

i) Statically, meaning that the discrete variables times series s(t) will be calculated at the detection step of
the algorithm and will not change during the fit. In this case one fits only the parameters describing
the modes. This has the benefit of simplicity, but comes with problems. The simplification in the
representation of the reactions will introduce a difference between the original and the hybrid
model, and such a difference should impact on the position of transitions.

ii) Statically, but allow for modifications of the discrete variables time series s(t). We could try to include
the positions of these transitions in the fitting parameters, but it would increase the complexity of
the cost function. It would notably be a problem to modify all transitions occurring in a single
reaction accordingly, which is important for the computation of mode control parameters.

iii) Dynamically. We could use the inequations defining the positions of the transitions dynamically, by
evaluating them during the optimization. The transitions positions will be determined according
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to the original model conditions applied to the hybrid model trajectories. This solves the problem
of adapting transitions positions of one reaction with respect to the others. The problem is that the
transition conditions from the original model are imported to the hybrid model with new parame-
ters (thresholds) that have also to be fitted. As thresholds parameters are generally more sensitive,
this choice increases the optimization difficulty.

Fitting the hybrid model parameters.
Once defining the model structure and the parameters to be fitted we can define a cost function

representing the distance between the trajectories of the hybrid and smooth model. We use a parallel
version of Lam’s simulated annealing algorithm [11, 4] to minimize this cost function with respect to the
parameters of the hybrid model. We limit the parameters search space to those involved in the hybridized
reactions (a more extensive search is nevertheless possible). For the cost function, we have decided to
test both species trajectories and reaction fluxes. When we limit ourselves to species trajectories, since
some reactions have transitions that are close in time, there is a risk that some hybridized reaction will
compensate for others. We wanted each hybridized reaction to be as much as possible a replica of the
original reaction.

When using the definition with static discrete variables s(t) and fitting only the mode parameters
(cases i) above), we were not able to obtain even an imperfect fit of the model (in this case the trajectories
of the hybrid model are very different from the ones of the original model and even become instable).
We chose to include transition positions to the parameters of the fitting (case ii)), and were able to obtain
a reasonable fit. However, the imperfections in the localisation of these new transition positions made
difficult to find good control parameters (see next step) for all the hybridized reactions. The trajectories
of the hybrid model fitted using this method are shown in Fig. 3. One can notice important differences
between the trajectories of the hybrid and original model, although these differences remain bounded
and the stability of the limit cycle oscillations is preserved.

When using the definition with the original model conditions for transitions (case iii)), we were
able to obtain a working hybrid model, but the fit can still be improved by modifying slightly the mode
control parameters. We can observe on Fig. 4 that while the dynamics of the model is preserved, there
are differences in the transition positions.

Thus, when we included the parameters of transitions conditions, we obtained a model which fits
better the original one. As a control we can see the results of the fitting on both the trajectories of the
four main variables (Fig.5) and the fluxes of some hybridized reactions (Fig.6).
An interesting result of this optimization is that some hybridized reactions stopped having transitions,
suggesting that the best fit would be obtained without these transitions. The reaction R6 (Fig. 7) is one of
these reactions. This could be the result of the sensitivity of transition control parameters and a selection
of a more robust solution.

Computing the mode control parameters. If we chose the static method of representing transitions
during the fit, we now have to determine a regulation matrix, which will allow a dynamic definition of
the events location.

Let sm = H(∑ j∈Cm wm ju j−h j) be the discrete variables and sm
k the constant values of sm piecewisely,

on time intervals Ik identified at the detection step. Consider now the optimal trajectories u∗i (tl), calcu-
lated piecewisely with fitted mode parameters.

Then, one should have

( ∑
j∈Cm

wm ju∗j(tl)−h j)sm
k > 0, for all tl ∈ Ik. (8)

This is a problem of linear programming, and is solved using the simplex algorithm [6].
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Figure 3: Comparison of the trajectories of the four main variables. (blue: Cyclin-A, green: Cyclin-B,
red: Cyclin-C, aqua: cell size) (Plain lines) Original model (Dashed lines) Hybrid model without mode
control parameters fitting (case ii)).

Figure 4: Comparison of the trajectories of the four main variables. (blue: Cyclin-A, green: Cyclin-B,
red: Cyclin-C, aqua: cell size) (Plain lines) Original model (Dashed lines) Hybrid model without mode
control parameters fitting (case iii)).

At this step, it is interesting to note that we have some choice on which variable can control a given
reaction, i.e. on the subsets Cm. This potentially leads to multiple solutions of the inequations. The
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Figure 5: Comparison of the trajectories of the four main variables. (blue: Cyclin-A, green: Cyclin-
B, red: Cyclin-C, aqua: cell size) (Plain lines) Original model (Dashed lines) Hybrid model with mode
control parameters fitting (case iii))W.

Figure 6: Comparison of original and hybridized reaction fluxes. Top : GK Reaction R4. Bottom : MM
Reaction R10. Blue : flux of original reaction, Green : flux of hybridised reaction

best choice would be here to use the biological knowledge to choose the species actually involved in the
reaction.

The problem with this step is that its success depends on the conservation of the transition positions
between the simulations with static and dynamic mode control. Or, this property is valid only to some
extent and the dynamic transitions can shift with respect to their static positions. As a consequence,
solving all the inequations (8) may sometimes be impossible.

To cope with this issue, we introduced a variable ε so that the inequalities (8) are modified to :

( ∑
j∈Cm

wm ju∗j(tl)−h j)sm
k + ε > 0, for all tl ∈ Ik, (9)

This modification enables us to solve all the inequations, and gives us a good metric to asses the
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Figure 7: Comparison of reaction R6 results without and with the fitting of transition control parameters.
Top : Fit without control parameters. Bottom : Fit with control parameters. Blue : flux of original
reaction, Green : flux of hybridized reaction

quality of the resolution. Furthermore, the parameter ε can be minimized within the simplex algorithm.
The ideal case is when ε is negative or zero. When simulating the hybrid model, we found out that with
a positive epsilon, the model is most of the time unstable.

Periodicity is not the only difficulty for this step. In our formalism, the threshold to modify the
boolean variables controlling a given reaction is the same for an activation or an inactivation. This could
also be a problem, as we can not always enforce such a condition during the fitting. There are different
solutions to this problem. The first one would be to have different thresholds for reaction activation
and inactivation, but this choice misses the simplicity of the previous method of control. More precisely,
even activation and inactivation thresholds correspond geometrically to control of the modes by manifold
crossing (activation when crossing takes place in one direction, inactivation for crossing in the opposite
direction), whereas different thresholds do not allow for such a simple picture.
The other solution would be not to limit ourselves to the biologically relevant variables to control these
transitions. As we increase the number of variables, the probability to find a combination which satisfies
the inequations increases. The problem with this choice is the large number of possible combinations.
We used a genetic algorithm which selects the variables which had the lowest ε value and were able to
find combinations which satisfy the inequations for some reactions. But for others reaction, especially
Michaelis-Menten reactions, even with all variables, we were not able to obtain low enough ε . We were
able to use this method to build a hybrid model which only hybridized the Goldbeter-Koshland reactions.
The result can be seen in Fig. 8 and the corresponding model is given in Table 2.3.

4 Conclusion

We have presented a hybridization scheme, allowing to transform a biochemical network model, con-
taining reactions with complex non-linear rate functions, into a hybrid model with piece-wise linear
rate functions. This scheme can be applied to any model containing Goldbeter-Koshland or Michaelis-
Menten kinetic laws. More generally, extensions of this method can be applied to biochemical net-
work models whose kinetic laws are rational functions of the species concentrations. These include
the Goldbeter-Koshland case, as this mechanism is obtained by model reduction from two coupled
Michaelis-Menten reactions. The resulting hybrid model in the general case is piecewise smooth, but
not necessarily linearly smooth. This generalization is based on tropicalization [15, 14] and consists
in approximating rational rate functions by tropical polynomials, that are represented piecewisely by
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Figure 8: Comparison of the trajectories of the four main variables. (blue: Cyclin-A, green: Cyclin-
B, red: Cyclin-C, aqua: cell size) (Plain lines) Original model (Dashed lines) Hybrid model with mode
control parameters fitting.

multivariate monomials.
The identification algorithm proposed in the paper combines the static or dynamic location of the

events, the identification of the mode parameters by simulated annealing, and the identification of the
mode control parameters by linear programming. The hardest step of this algorithm is the simulated
annealing. We have discussed three optimization strategies to reduce the number of the parameters to
be determined by simulated annealing, while keeping the flexibility of the optimization scheme. In
this paper, the hybrid cell cycle model has been obtained from artificial trajectories generated with a
smooth model. That allowed us to include both concentration and rates trajectories in the cost function,
which is a strong constraint. In the future, this constraint could be released and cost functions based on
concentration trajectories only, could be used to learn hybrid cell cycle models directly from experimental
data.
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Tables

Table 2.1 - Definition of reactions in the original and hybridized mammalian cell cycle
model. The inequalities controlling the mode switching result directly from the definition
of the reaction rates in the original model.
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reaction smooth variables reaction hybrid control

R1 = ksapp.[Mass]. v1 = kat fp + kat f app.[CycA]+ R1h = ksapp.[Mass].s1 s1 = v1 > v2
.GK(v1,v2,Jat f ,Jit f ) +kat f dpp.CycD0.[Mass]

v2 = kit fp + kit f app.
.[CycA]+ kit f bpp.[CycB]

R2 = k25pp.[pB] v1 = ka25p + ka25pp.[CycE] R2h = k25pp.[pB].s2 s2 = v1 > v2
.GK(v1,v2,Ja25,Ji25) v2 = ki25p + ki25pp.[Cdc20A]
R3 = kweepp.[CycB] v1 = kaweep + kaweepp.[Cdc20A] R3h = kweepp.[CycB].s3 s3 = v1 > v2
.GK(v1,v2,Jawee,Jiwee)v2 = kiweep + kiweepp.[CycB]
R4 = ksbpp.[Mass] v1 = ka f b.[CycB] R4h = ksbpp.[Mass].s4 s4 = v1 > v2
.GK(v1,v2,Ja f b,Ji f b) v2 = ki f b
R5 = ksepp.[Mass] v1 = kat fp + kat f app.[CycA]+ R5h = ksepp.[Mass].s1 s1 = v1 > v2
.GK(v1,v2,Jat f ,Jit f ) +kat f dpp.CycD0.[Mass]

v2 = kit fp + kit f app.
.[CycA]+ kit f bpp.[CycB]

R6 = ks20pp X = [CycB] R6h = ks20pp.s5 s5 = X > Km
.X/(Km +X) Km = J20 +ks20pp2.s̃5.X
R7 = kaie.[CycB] X = (APCT − [APCP]) R7h = ks20pp.[CycB]
.X/(Km +X) Km = Jaie
R8 = kiie X = [APCP] R8h = kiie.s6 s6 = X > Km
.X/(Km +X) Km = Jiie +kiie2∗ s̃6.X
R9 = ka20.[APCP] X = [Cdc20i] R9h = ka20.[APCP]
.X/(Km +X) Km = Ja20
R10 = ki20 X = [Cdc20A] R10h = ki20.s7 s7 = X > Km
.X/(Km +X) Km = Ji20 +ki202.s̃7.X
R11 = kah1p X = (Cdh1T − [Cdh1]) R11h = kah1p.s8 s8 = X > Km
.X/(Km +X) Km = Jah1 +kah1p2.s̃8.X
R12 =
kah1pp.[Cdc20A]

X = (Cdh1T − [Cdh1]) R12h = kah1pp.[Cdc20A].s8 s8 = X > Km

.X/(Km +X) Km = Jah1 +kah1pp2.[Cdc20A].s̃8.X
R13 = kih1app.[CycA] X = [Cdh1] R13h = kih1app.[CycA].s9 s9 = X > Km
.X/(Km +X) Km = Jih1 +kih1app2.[CycA].s̃9.X
R14 = kih1bpp.[CycB] X = [Cdh1] R14h = kih1bpp.[CycB].s9 s9 = X > Km
.X/(Km +X) Km = Jih1 +kih1bpp.[CycB].s̃9.X
R15 = kih1epp.[CycE] X = [Cdh1] R15h = kih1epp.[CycE].s9 s9 = X > Km
.X/(Km +X) Km = Jih1 +kih1epp.[CycE].s̃9.X

Table 2.2.1 - Parameters of the original mammalian cell cycle model described in the ta-
ble 2.1.

constant value

ksepp 0.18
kat f app 0.2
kat f dpp 3.0
kat f epp 0.5
kit fp 0.25
kit f app 0.1
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kit f bpp 0.1
ksbpp 0.03
kweepp 0.2
k25pp 5
ka f b 1.0
ki f b 0.1
ksapp 0.025
kaie 0.07
kiie 0.18
Jaie 0.01
Jiie 0.01
ks20pp 0.15
J20 1
ka20 0.5
ki20 0.25
Ji20 0.0050
kah1p 0.18
kah1pp 3.5
kih1app 0.2
kih1bpp 1.0
kih1epp 0.1
Jah1 0.01
Jih1 0.01
kaweep 0.3
kiweepp 1.0
ka25pp 1
ki25p 0.3

Table 2.2.2 - Parameters of the hybridized mammalian cell cycle model described in the
table 2.1.

constant value

ksapp 0.024635
kat fp 0
kat f app 0.00090318
kat f dpp 2.6897
kat f epp 2.1407
kit fp 0.22282
kit f app 0
kit f bpp 0.14253
k25pp 3.559
ka25p 0
ka25pp 21.93
ki25p 5.425
ki25pp 0
kweepp 0.096009
kaweep 3.5714
kaweepp 0
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kiweep 0
kiweepp 9.003
ksbpp 0.033299
ka f b 0.15998
ki f b 0.0056319
ksepp 0.14842
ks20pp 0
ks20pp2 0.048074
J20 3
kaie 0.076693
kiie 0.1685
kiie2 17.568
Jiie 0.0096156
ka20 0.4815
ki20 0.24271
ki202 5.3118
Ji20 0.045084
kah1p 0
kah1p2 0.15387
kah1pp 0
kah1pp2 3.9768
Jah1 1
kih1app 0.099851
kih1app2 2.5689
kih1bpp 0
kih1bpp2 14.966
kih1epp 0.10502
kih1epp2 1.7755
Jih1 0.12035

Table 2.3 - Definition of reactions in the original and hybridized mammalian cell cycle
model. The inequalities controlling the mode switching result from the computation of
mode control parameters post-fitting.

reaction smooth variables reaction hybrid

R1 = ksapp.[Mass]. v1 = kat fp + kat f app.[CycA]+ R1h = ksapp.[Mass].s1
.GK(v1,v2,Jat f ,Jit f ) +kat f dpp.CycD0.[Mass]

v2 = kit fp + kit f app.
.[CycA]+ kit f bpp.[CycB]

R2 = k25pp.[pB] v1 = ka25p + ka25pp.[CycE] R2h = k25pp.[pB].s2
.GK(v1,v2,Ja25,Ji25) v2 = ki25p + ki25pp.[Cdc20A]
R3 = kweepp.[CycB] v1 = kaweep + kaweepp.[Cdc20A] R3h = kweepp.[CycB].s3
.GK(v1,v2,Jawee,Jiwee) v2 = kiweep + kiweepp.[CycB]
R4 = ksbpp.[Mass] v1 = ka f b.[CycB] R4h = ksbpp.[Mass].s4
.GK(v1,v2,Ja f b,Ji f b) v2 = ki f b
R5 = ksepp.[Mass] v1 = kat fp + kat f app.[CycA]+ R5h = ksepp.[Mass].s1
.GK(v1,v2,Jat f ,Jit f ) +kat f dpp.CycD0.[Mass]
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v2 = kit fp + kit f app.
.[CycA]+ kit f bpp.[CycB]

control value

s1 w1,1.[CycA]+w1,2.[CycB]+w1,4.[APCP]+w1,6.[Cdc20i]+w1,7.[Cdh1]+w1,8.[CKI]+
w1,9.[Mass]−1 > 0

s2 w2,3.[CycE]+w2,9.[Mass]+w2,12.[TriE]−1 > 0
s3 w3,3.[CycE]+w3,9.[Mass]+w3,12.[TriE]−1 > 0
s4 w2,2.[CycB]+w2,9.[Mass]+w2,10.[pB]−1 > 0

Table 2.4 - Parameters of the hybridized mammalian cell cycle model described in the
table 2.3.

constant value

ksapp 0.024064
ksepp 0.18569
kweep p 0.17326
k25pp 3.5168
ksbpp 0.030148
w1,1 1.e+9
w1,2 0.4352e+9
w1,4 -1.5677e+9
w1,6 -4.0592e+9
w1,7 1.e+9
w1,8 -0.7937e+9
w1,9 0.1138e+9
w2,3 -2.218e+9
w2,9 1.e+9
w2,12 -10.027e+9
w3,3 0.2278e+9
w3,9 -0.1015e+9
w3,12 1.e+9
w4,2 0.2294e+9
w4,9 -0.0294e+9
w4,10 1e+9
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