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Piecewise smooth hybrid systems, involving continuous anddiscrete variables, are suitable models
for describing the multiscale regulatory machinery of the biological cells. In hybrid models, the
discrete variables can switch on and off some molecular interactions, simulating cell progression
through a series of functioning modes. The advancement through the cell cycle is the archetype
of such an organized sequence of events. We present an approach, inspired from tropical geome-
try ideas, allowing to reduce, hybridize and analyse cell cycle models consisting of polynomial or
rational ordinary differential equations.

1 Introduction

Hybrid systems are widely used in automatic control theory to cope with situations arising when a finite-
state machine is coupled to mechanisms that can be modeled bydifferential equations [13]. It is the case
of robots, plant controllers, computer disk drives, automated highway systems, flight control, etc. The
general behavior of such systems is to pass from one type of smooth dynamics (mode) described by one
set of differential equations to another smooth dynamics (mode) described by another set of differential
equations. The command of the modes can be performed by changing one or several discrete variables.
The mode change can be accompanied or not by jumps (discontinuities) of the trajectories. Depending on
how the discrete variables are changed, there may be severaltypes of hybrid systems: switched systems
[22], multivalued differential automata [26], piecewise smooth systems [9]. Notice that in the last case,
the mode changes when the trajectory attains some smooth manifolds. In these examples, the changes of
discrete variables and the evolution of continuous variables are deterministic. The class of hybrid systems
can be extended by considering stochastic dynamics of both continuous and discrete variables, leading to
piece-wise deterministic processes, switched diffusionsor diffusions with jumps [19, 6, 5, 23, 4]. Hybrid,
differential, or stochastic Petri nets provide equivalentdescriptions of the dynamics and were also used
in this context [7].

The use of hybrid models in systems biology can be justified bythe temporal and spatial multi-
scaleness of biological processes, and by the need to combine qualitative and quantitative approaches to
study dynamics of cell regulatory networks. Furthermore, hybrid modelling offers a good compromise
between realistic description of mechanisms of regulationand possibility of testing the model in terms
of state reachability and temporal logics [12, 14]. Threshold dynamics of gene regulatory networks
[2, 20] or of excitable signaling systems [28] has been modelled by piecewise-linear and piecewise-
affine models. These models have relatively simple structure and can, in certain cases, be identified from

http://dx.doi.org/10.4204/EPTCS.92.7


V. Noel, D. Grigoriev, S. Vakulenko, & O. Radulescu 89

data [18, 8].Some methods were proposed for computing the set of reachable states of piecewise affine
models [3].

Among the applications of hybrid modeling, one of the most important is the cell cycle regulation.
The machinery of the cell cycle, leading to cell division andproliferation, combines slow growth, spatio-
temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by
post-translational modifications. The advancement through the cell cycle is a well defined sequence of
stages, separated by checkpoint transitions. This justifies hybrid modelling approaches, such as Tyson’s
hybrid model of the mammalian cell cycle [24]. This model is based on a Boolean automaton whose
discrete transitions trigger changes of kinetic parameters in a set of ODEs. The model has been used to
reproduce flow cytometry data. Instead of building the hybrid model from scratch, another strategy is
to identify hybrid models from experimental or artificial time series [16, 17, 1]. The resulting cell cycle
hybrid models can be used for hypothesis testing, as they areor as parts of larger, integrated models.

In this paper we develop ideas first introduced in [15]. We discuss how a given model of the cell
cycle, based on ODEs, can be hybridized. The hybridization,based on a tropical geometry heuristics,
unravels commonalities of cell cycle models. These systemscombine quasi-equilibrium states, repre-
sented by slow invariant manifolds and excitability, represented by rapid transitions to and from these
manifolds. With respect to [15] we introduce several new concepts and provide rigorous justification of
the procedures. Two general hybridization procedures called tropicalizations are introduced in section 2.
The tropicalized dynamics is guaranteed to be a good approximation for polynomial or rational systems
with well separated terms and that satisfy a condition called permanency. In subsection 2.2 we introduce
the tropical equilibration as a method to test permanency. In section 3 we apply these methods to a cell
cycle biochemical network model.

2 Tropical geometry and hybridization

2.1 General settings

In chemical kinetics, the reagent concentrations satisfy ordinary differential equations:

dxi

dt
= Fi(x), 1≤ i ≤ n. (1)

Rather generally, the rates are rational functions of the concentrations and read

Fi(x) = Pi(x)/Qi(x), (2)

wherePi(x)=∑α∈Ai
ai,αx

α , Qi(x)=∑β∈Bi
bi,βx

β , are multivariate polynomials. Herexα = xα1
1 xα2

2 . . .xαn
n ,

x
β = xβ1

1 xβ2
2 . . .xβn

n , ai,α ,bi,β , are nonzero real numbers, andAi,Bi are finite subsets ofNn.
Special case are represented by

Fi(x) = P+
i (x)−P−

i (x), (3)

whereP+
i (x), P−

i (x) are Laurent polynomials with positive coefficients,P±
i (x) = ∑α∈A±

i
a±i,αx

α , a±i,α >

0, A±
i are finite subsets ofZn.
In multiscale biochemical systems, the various monomials of the Laurent polynomials have different

orders, and at a given time, there is only one or a few dominating terms. Therefore, it could make sense
to replace Laurent polynomials with positive real coefficients ∑α∈Aaαx

α , by max-plus polynomials
maxα∈A{log(aα )+< log(x),α >}.
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This heuristic can be used to associate a piecewise-smooth hybrid model to the system of rational
ODEs (1), in two different ways.

The first method was proposed in [15] and can be applied to any rational ODE system defined by
(1),(2):

Definition 2.1 We call complete tropicalization of the smooth ODE system(1),(2) the following piecewise-
smooth system:

dxi

dt
= DomPi(x)/DomQi(x), (4)

where Dom{ai,αx
α}α∈Ai = sign(ai,αmax)exp[maxα∈Ai{log(|ai,α |)+ < u,α >}]. u = (logx1, . . . , logxn),

and ai,αmax, αmax∈Ai denote the coefficient of the monomial for which the maximum is attained. In simple
words, Dom renders the monomial of largest absolute value, with its sign.

The second method,proposed in [21], applies to the systems (1),(3).

Definition 2.2 We call two terms tropicalization of the smooth ODE system(1),(3) the following piecewise-
smooth system:

dxi

dt
= DomP+i (x)−DomP−i (x), (5)

The two-terms tropicalization was used in [21] to analyse the dependence of steady states on the model
parameters. The complete tropicalization was used for the study of the model dynamics and for the
model reduction [15].

For both tropicalization methods, for each occurrence of the Dom operator, one can introduce a
tropical manifold, defined as the subset ofR

n where the maximum in Dom is attained by at least two
terms. For instance, forn = 2, such tropical manifold is made of points, segments connecting these
points, and half-lines. The tropical manifolds in such an arrangement decompose the space into sectors,
inside which one monomial dominates all the others in the definition of the reagent rates. The study of
this arrangement give hints on the possible steady states and attractors, as well as on their bifurcations.

2.2 Justification of the tropicalization and some estimates

In the general case, the tropicalization heuristic is difficult to justify by rigorous estimates, however, this
is possible in some cases. We state here some results in this direction. To simplify, let us consider the
class of polynomial systems, corresponding to mass action law chemical kinetics:

dxi

dt
= Pi(x,ε) =

M

∑
j=1

Mi j (x,ε), Mi j = Pi j (ε)xαi j (6)

whereαi j are multi-indices, andε is a small parameter. So, the right hand side of (6) is a sum of
monomials. We suppose that coefficientsPi j have different orders inε :

Pi j (ε) = εbi j P̄i j , (7)

wherebi j 6= bi′ j ′ for (i, j) 6= (i′, j ′).
We also suppose that the coneR> = {x : xi ≥ 0} is invariant under dynamics (6) and initial data are

positive:
xi(0)> δ > 0.

The terms (7) can have different signs, the ones withP̄i j > 0 are production terms, and those with̄Pi j < 0
are degradation terms.
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From the biochemical point of view, the choice (7) is justified by the fact that biochemical processes
have many, well separated timescales. Furthermore, we are interested in biochemical circuits that can
function in a stable way. More precisely, we use the permanency concept, borrowed from ecology (the
Lotka -Volterra model, see for instance [25]).

Definition 2.3 The system(6) is permanent, if there are two constants C− > 0 and C+> 0, and a function
T0, such that

C− < xi(t)<C+, f or all t > T0(x(0)) and f or every i. (8)

We assume that C± and T0 are uniform in (do not depend on)ε asε → 0.

For permanent systems, we can obtain some results justifying the two procedures of tropicalization.

Proposition 2.4 Assume that system(6) is permanent. Let x,̂x be the solutions to the Cauchy problem
for (6) and (4) (or (5)), respectively, with the same initialdata:

x(0) = x̂(0).

Then the difference y(t) = x(t)− x̂(t) satisfies the estimate

|y(t)| <C1εγ exp(bt), γ > 0, (9)

where the positive constants C1,b are uniform inε . If the original system (6) is structurally stable in
the domainΩC−,C+ = {x : C− < |x| <C+}, then the corresponding tropical systems (4) and (5) are also
permanent and there is an orbital topological equivalencex̄ = hε (x) between the trajectories x(t) and
x̄(t) of the corresponding Cauchy problems. The homeomorphism hε is close to the identity asε → 0.

The proof of the estimate (9) follows immediately by the Gronwall lemma. The second assertion follows
directly from the definition of structural stability.

Permanency property is not easy to check. In the case of systems (6) we can make a renormalization

xi = εai x̄i (10)

and suppose that (8) holds for ¯xi with C±
i uniform in ε .

We seek for renormalization exponentsai such that only a few terms dominate all the others, for
eachi-th equation (6) asε → 0. Let us denote the number of terms with minimum degree inε for i-th
equation asmi. Naturally, 1≤ mi ≤ Mi. After renormalization, we remove all small terms that have
smaller orders inε asε → 0. We can call this proceduretropical removing. The system obtained can be
namedtropically truncated system.

Let us denoteα i j
l the l th coefficient of the multi-index~αi j . If all mi = 1 then we have the following

truncated system
dx̄i

dt
= ε µi Fi(x̄), Fi = pi j (i)x̄

α i j (i)
, (11)

where

µi = γi j (i)

n

∑
l=1

α i j (i)
l al (12)

and

µi > γi j

n

∑
l=1

α i j
l al f or all j 6= j(i). (13)
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If all mi = 2, in order to find possible renormalization exponentsai , it is necessary to resolve a family of
linear programming problem. Each problem is defined by a set of pairs( j(i),k(i)) such thatj(i) 6= k(i).
We defineµi by

µi = γi j (i)+
n

∑
l=1

α i j (i)
l al = γik(i)+

n

∑
l=1

α ik(i)
l al (14)

and obtain the system of the following inequalities

µi ≥ γi j +
n

∑
l=1

α i j
l al f or all j 6= j(i),k(i). (15)

The following straightforward lemma gives a necessary condition of permanency of the system (6).

Lemma 2.5 Assume a tropically truncated system is permanent. Then, for each i∈ {1, . . . ,n}, the i-th
equation of this system contains at least two terms. The terms should have different signs for coefficients
pi j , i.e., one term should be a production one, while another term should be a degradation term.

We call “tropical equilibration”, the condition in Lemma 2.5. This condition means that permanency is
acquired only if at least two terms of different signs have the maximal order, for each equation of the
system (6). This idea is not new, and can be traced back to Newton.

The tropical equilibration condition can be used to determine the renormalization exponents, by the
following algorithm.

Step 1. For eachi let us choose a pair( j(i),k(i)) such thatj, i ∈ {1, . . . ,mi} and j < k. The sign of
the corresponding terms should be different.

Step 2. We resolve the linear system of algebraic equations

γi j (i)− γik(i) =−
n

∑
l=1

α i j (i)
l al +

n

∑
l=1

α ik(i)
l al , (16)

for al , together with the inequalities (15).
Notice that although that Step 2 has polynomial complexity,the tropical equilibration problem has

an exponential number of choices at Step 1.
Assume that, as a result of this procedure, we obtain the system

dx̄i

dt
= ε µi(F+

i (x̄)−F−
i (x̄)), F±

i = pi j± x̄α i j
± . (17)

One can expect that, in a ”generic” case1, all µi are mutually different, namely

0= µ1 < µ2 < ... < µn−1 < µn. (18)

We can now state a sufficient condition for permanency. Let usconsider the first equation (17) withi = 1
and let us denotey= x̄1,z= (x̄2, ..., x̄n)

tr . In this notation, the first equation becomes

dy
dt

= f (y) = b1(z)y
β1 −b2(z)y

β2, b1,b2 > 0, βi ∈ R. (19)

Sinceµ2 > 0, one has thatz(t) is a slow function of time and thus we can suppose thatbi are constants
(this step can be rendered rigorous by using the concept of invariant manifold and methods from [11]).

1supposing that multi-indices~αi j are chosen uniformly, by generic we understand almost always except for cases of vanish-
ing probability, see also [10]
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The permanency property can be then checked in an elementaryway. All rest points of (19) are roots of
f . If f > 0, y(t) is an increasing time function and iff < 0, y(t) is a decreasing time function. A single
root y1 of f within (0,+∞) is given by

y1 =
b2

b1

d

, d =
1

β1−β2
. (20)

These properties entail the following result:

Lemma 2.6 Equation 19 has the permanence property if and only if

0< β1 < β2, i

or
β1 < β2 < 0, ii

or
β1 < 0, β2 > 0. iii

For fixed z, in these cases we have
y(t,z)→ y0, as t→ ∞.

The generic situation described by the conditions (18) leadto trivial “chain-like” relaxation towards a
point attractor, provided that we have permanency at each step. This result is the nonlinear analogue of
the similar result that monomolecular networks with total separation relax as chains and can only have
stable point attractors [10].

The following theorem describes a less trivial situation, when limit cycles are possible.

Theorem 2.7 Assume0= µ1 < µ2 < ... < µn−1 ≤ µn holds. If the procedure, described above, leads to
the permanency property at each step, where i= 1,2, ...,n−2, and the last two equations have a globally
attracting hyperbolic rest point or globally attracting hyperbolic limit cycle, then the tropically truncated
system is permanent and has an attractor of the same type. Moreover, for sufficiently smallε the initial
system also is permanent for initial data from some appropriate domain Wε ,a,A and has an analogous
attracting hyperbolic rest point (limit cycle) close to theattractor of the truncated system. If the rest
point (cycle) is not globally attracting, then we can say nothing on permanency but, for sufficiently small
ε , the initial system still has an analogous attracting hyperbolic rest point (limit cycle) close to the
attractor of truncated system and the same topological structure.

Finally, let us note that tropical equilibrations with permanency imply the existence of invariant mani-
folds. This allows to reduce the number of variables of the model while preserving good accuracy in the
description of the dynamics. The following Lemma is useful in this aspect.

Lemma 2.8 Consider the system

dy
dt

= f (y) = b1(z)y
β1 −b2(z)y

β2, b1,b2 > 0, βi ∈ R. (21)

dz
dt

= λF(y,z), (22)
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where z∈ Rm, λ > 0 is a parameter and the function F enjoys the following properties. This function
lies in an Ḧolder class

F ∈C1+r , r > 0,

and the corresponding norms are uniformly bounded inΩ = (0,+∞)×W , for some open domain W⊂
Rm:

|F|C1+r (Ω ) <C2.

Assume one of conditionsi, ii, iii of Lemma 2.6 holds. We also suppose that bi are smooth functions of z
for all z such that|z|> δ0 > 0. Assume that z∈W implies|z|> δ0.

Then, for sufficiently smallλ < λ0(C2,b1,b2,β1,β2,δ ) equations (21), (23) have a locally invariant
and locally attracting manifold

y=Y(z,λ ), Y ∈C1+r(W), (23)

and Y has the asymptotics
Y(z,λ ) = y1(z)+Ỹ, Ỹ ∈C1+r(W), (24)

where
|Ỹ(z,λ )|C1+r (W) <Csλ s, s> 0. (25)

Proof. The proof is standard, follows from Theorems in [11], Ch. 9.

3 A paradigmatic cell cycle model and its tropicalization

3.1 Description of the model

We study here the cell cycle model proposed by Tyson [27]. This model mimics the interplay between
cyclin and cyclin dependent kinase cdc2 (forming the maturation promoting factor MPF complex) during
the progression of the cell cycle. The model demonstrates that this biochemical system can function as an
oscillator, or converge to a steady state with large MPF concentration, or behave as an excitable switch.
The three regimes can be associated to early embryos rapid division, metaphase arrest of unfertilized
eggs, and growth controlled division of somatic cells, respectively. This model takes into account auto-
catalytic activity of MPF (positive feed-back). It can be described as a nonlinear cycle of biochemical
reactions and corresponds to the following set of differential equations:

y′1 = ε−3k9y2− ε−6k8y1+k6y3, y′2 = ε−6k8y1− ε−3k9y2− ε−2k3y2y5,

y′3 = ε2k′4y4+ ε−2k4y4y2
3−k6y3, y′4 =−ε2k′4y4− ε−2k4y4y2

3+ ε−2k3y2y5,

y′5 = ε2k1− ε−2k3y2y5, (26)

Hereki > 0 are rate constants,yi , i ∈ [1,5] are concentrations of cdc2, p-cdc2 (phosphorylated kinase),
cyclin-p:cdc2 complex (active MPF), cyclin-p:cdc2-p complex (inactive MPF), and cyclin, respectively.
With respect to the original model we have introduced a smallparameterε > 0 to cope with the order of
the rate constants (ε = 0.1 in the original model).

The system (26) has the conservation law

y1(t)+y2(t)+y3(t)+y4(t) = 1, (27)

where the value 1 (total initial concentration of kinase cdc2) was chosen by convenience.
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3.2 Tropical equilibrations and model reduction

Let us apply the tropical equilibration principle. To this aim, we renormalize the variables,

yi = εai ȳi . (28)

Let us substitute these relations into the system of equations. As a result, we obtain

ȳ′1 = ε−3+a2−a1k9ȳ2− ε−6k8y1+k6εa3−a1ȳ3, ȳ′2 = ε−6+a1−a2k8ȳ1− ε−3k9ȳ2− ε−2+a5k3ȳ2ȳ5,

ȳ′3 = ε2+a4−a3k′4ȳ4+ ε−2+a3+a4k4ȳ4ȳ2
3−k6ȳ3, ȳ′4 =−ε2k′4ȳ4− ε−2+2a3k4ȳ4ȳ2

3+ ε−2+a2+a5−a4k3ȳ2ȳ5,

ȳ′5 = ε2−a5k1− ε−2+a2k3ȳ2ȳ5. (29)

The system (29) has the conservation law

εa1ȳ1(t)+ εa2ȳ2(t)+ εa3ȳ3(t)+ εa4ȳ4(t) = 1. (30)

In order to compute the exponentsai we use tropical equilibrations together with the conservation law
(30). There are 24 variants of tropical equilibrations. To our surprise, there is only one solution for the
exponents values. We can show that all possible equilibrations of the variablesy3, y4 andy5 uniquely set
the values of two exponents,a3 = 2, a4 = 0.

Let us consider the variants with respect to the equilibrations of the variablesy1 andy2. Denoting by
Ti the ith term in the equation, we have the following situations:

1) In eq. forȳ1: T1= T2, T3<= T1, In eq. forȳ2: T1= T2, T3<= T1.
2) In eq. forȳ1: T1= T2, T3<= T1, In eq. forȳ2: T1= T3, T2<= T3.
3) In eq. forȳ1: T2= T3, T1<= T2, In eq. forȳ2: T1= T2, T3<= T1.
4) In eq. forȳ1: T2= T3, T1<= T2, In eq. forȳ2: T1= T3, T2<= T1.
In the variant 1 (CaseI ) the tropical equilibrations do not fix the values of the exponenta5 and we

get

a1 = 7−a5, a2 = 4−a5, a3 = 2, a4 = 0, a5 ≥−1. (31)

In the variants 2,3,4 (CaseII ) the exponents are uniquely determined from equilibrations and we obtain

a1 = 8, a2 = 5, a3 = 2, a4 = 0, a5 =−1. (32)

However, (32) and the conservation law (30) are incompatible, therefore, the caseII can be rejected.
In the caseI the conservation law takes the formε7−a5ȳ1(t)+ ε4−a5ȳ2(t)+ ȳ4(t) = 1+o(1), asε → 0.
Assuming that ¯y2(0) = O(1) andȳ4 6= 1 (it is reasonable, since it is a ”generic case”), we obtaina5 = 4.
Thus, the only possible situation is variant 1 (CaseI ) and the corresponding set of exponents is:

a1 = 3, a2 = 0, a3 = 2, a4 = 0, a5 = 4. (33)

Let us note that the termsT1 andT2 in the equations for the variablesy1,y2 correspond to direct and
reverse rates of a phosphorylation/dephosphorylation cycle transformingy1 into y2 and back. Thus,
biochemically, (CaseI ) corresponds to the quasi-equilibrium of this cycle. Furthermore, the equilibration
of all the variables leads to the exponents (31). In this case, 2+ a4 − a3 = −2+ a3 + a4 = 0, 2=
−2+2a3 = −2+a2+a5−a4, meaning that the tropical equilibrations of the variablesy3, y4 are triple
(in each equation, all three terms have the same order).



96 Hybrid models of the cell cycle

We finally obtain the following renormalized system

ȳ′1 = ε−6(k9ȳ2−k8ȳ1)+k6ε−1ȳ3, ȳ′2 = ε−3(k8ȳ1−k9ȳ2)− ε2k3ȳ2ȳ5,

ȳ′3 = k′4ȳ4+k4ȳ4y2
3−k6ȳ3, ȳ′4 = ε2(−k′4ȳ4−k4ȳ4ȳ2

3+k3ȳ2ȳ5),

ȳ′5 = ε−2(k1−k3ȳ2ȳ5). (34)

The structure of the system (34) emphasizes the multiple time scales of the model. The fastest variables
are in ordery1, theny2 andy5. The variablesy3 andy4 are slow.

Assume that
ȳ2 > δ > 0. (35)

This important assumption ensures the existence of an invariant manifold and will be justified, a posteri-
ori.

Then, from the last equation (34) we obtain the relation

ȳ2ȳ5 = k1/k3+O(ε2),

which represents the equation of an invariant manifold.
In turn, this relation leads to the following equations for ¯y3, ȳ4

ȳ′3 = k′4ȳ4+k4ȳ4ȳ2
3−k6ȳ3, ȳ′4 = ε2(−k′4ȳ4−k4ȳ4ȳ2

3+k1). (36)

A second invariant manifold equation is defined by the equation

ȳ1 = k−1
8 (k9ȳ2+k6ε5ȳ3). (37)

Remind that ¯y3 is a slow variable. Then, for ¯y2 we have

ȳ′2 = ε2(k6ȳ3−k1). (38)

System (36) represents a two-dimensional reduced model of the initial five-dimensional system. This
result shows that tropical equilibrations can be used for model reduction.

The solutions of (36) either tend to the stable equilibrium

ȳ4 =
k1

k′4+k4(k1/k6)2 , ȳ3 = k1/k6, (39)

or, if this equilibrium is unstable, to a limit cycle.
Based on the general Theorem 2.7 we can assert the following:

Theorem 3.1 Assume(35)holds withδ > 0. If the shorted system (36) has a stable hyperbolic limit cy-
cle, then, under above conditions, for sufficiently smallε the five component system (26) also has a stable
limit cycle. If the shorted system (36) has a stable hyperbolic equilibrium, then, under above conditions,
for sufficiently smallε the five component system (26) also has a stable hyperbolic equilibrium.

We have studied the system (36) analytically and numerically. The numerical simulations confirm the
criteria of cycle existence both for smallε and forε = O(1). For small epsilon the cycle has a singular
structure. The amplitude of ¯y3 and the cycle period increase inε , approximatively, asε−2 (the assertion
about period is natural since the rate of ¯y4 is O(ε2)).
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Hyperbolicity can be straightforwardly checked for the rest point (39), by computing the eigenvalues
of the linearized system. Denote byY = (ȳ3, ȳ4). When the rest pointY0 = (ȳ0

3, ȳ
0
4) is hyperbolic and

stable we have the following estimate

|Y(t)−Y0|<C1exp(−c1ε2t) (40)

with someC1,c1 > 0 holds. Integrating (38) for ¯y2 over interval[0,τ ] gives

|ȳ2(τ)− ȳ2(0)| < ε2C1c−1
1 = o(1) (41)

uniformly in τ > 0 asε → 0. This yields that ¯y2(t)> δ if ȳ2(0)> 2δ and therefore, ¯y2(t) does not go to
zero for larget, justifying the estimate (35) needed for the existence of aninvariant manifold. The case
of a limit cycle is discussed in the next subsection.

3.3 Singular limit cycle and hybrid dynamics

Up to this point, the tropical ideas were used for reducing the dynamics of the model. In this section we
show that the tropicalization heuristic is well adapted fordecomposing the limit cycle into slow and fast
modes, providing a hybrid description of the dynamics.

Let us note that in a hybrid, excitable system, it is possiblethat not all variables are equilibrated.
Also, the system can have more than two different equilibrations and associated invariant manifolds, and
jump from one invariant manifold to another during the dynamics. Let us consider that the variables
y1,y2,y5 are equilibrated as above, but now, only one among the variablesy3 or y4 are equilibrated. We
have four situations:

1) In eq. forȳ3: T1= T3, T2<= T1, 2) In eq. for ¯y3: T2= T3, T1<= T2,
3) In eq. forȳ4: T1= T3, T2<= T1, 4) In eq. for ¯y4: T2= T3, T1<= T2.
Combined with the conservation law condition (30), variants 1 and 2 lead to the same triple tropical

equilibration as before (CaseI ) and exponents (33). We denote the corresponding invariantmanifold
M1. The renormalized equations are the same as (36).

Variant 3 can be rejected by the general permanency criterion given by Lemma 2.6. Variant 4 (Case
III ) satisfies the permanency criterion and leads to

a1 = 3, a2 = 0, a3 = 0, a4 = 4, a5 = 4. (42)

This corresponds to a double equilibration (two equal terms) of the variabley4, the variabley3 being not
equilibrated. We denote the corresponding invariant manifold M2. The renormalized equations read

ỹ′3 = ε6k′4ỹ4+ ε2k4ỹ4ỹ2
3−k6ỹ3, ỹ′4 =−ε2k′4ỹ4+ ε−2(−k4ỹ4ỹ2

3+k1). (43)

We can provide a hybrid description of the cell cycle, by decomposing the periodic orbit into three
modes (Fig.1). The first mode is the slowest and has the longest duration. It consists in the dynamics on
the slow invariant manifoldM1 at low values ofy3, and can be described by the algebraic-differential
system ˜y′3 = ε2k1−k6ỹ3, k′4ỹ4+k4ỹ′4ỹ2

3−k6ỹ3 = 0 (part betweenO1 andO of the orbit in Fig1c)). The exit
from the invariant manifoldM1 occurs at a critical point (pointO). The next slowest mode corresponds
to the decrease ofy3 (part betweenO2 andO1 of the orbit in Fig1c)) and can be described by two terms
truncated system ˜y′4 = ε−2(k1−k4ỹ4ỹ2

3), ỹ′3 = −k6ỹ3. Finally, there is a fast mode, corresponding to the
fast increase of ˜y3 (part betweenO andO2 of the orbit in Fig1c)) and described by the truncated system
ỹ′4 =−ε2k4ỹ4ỹ2

3, ỹ′3 = ε−2k4ỹ4ỹ2
3. One can notice (Fig1c)) that this hybrid approximation is very accurate
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for smallε . At a distance from the tropical manifold, the hybrid orbit coincides with the one generated
by the two terms or by the complete tropicalization. However, close to the tropical manifold, the two
term and the complete tropicalization are less accurate than the hybrid approximation described above.

Below we state rigorous estimates describing the slow movement onM1 and the fast jump towards
M2. The two terms description of the dynamics onM2 is a direct consequence of the Proposition 2.4
and Lemmas 2.6,2.8.

To simplify notation, we rewrite the system (36) fory3,y4 as

x′ = y+yx2−k0x, (44)

y′ = ε2(−y−yx2+k1). (45)

We can obtain such a presentation by a linear variable change.
Let us define the functions

X(y) =
k2

0−
√

k2
0−4y2

2y
,

X+(y) =
k2

0+
√

k2
0−4y2

2y
,

and the points
y0 = k0/2, x0 = X(y0) = 1.

Lemma 3.2 Solutions of (44), (45) with initial data x(0),y(0) such that

0< δ0 < x(0) < X+(y0)−δ0, 0< y(0)< y0−δ0, (46)

whereδ0 is a small positive number independent onε , satisfy

|x(t)−X(y(t))|<C1(ε +exp(−c1δ0t)), t < T0(x(0),y(0),ε) (47)

this estimate holds while
y(t) < y0−δ2, δ2 > 0. (48)

Let us find some estimates of solutions aty= y0,x= x0. Our goal is to prove that at this pointx(t) starts
to increase sharply. After this, the terms±yx2 play the main role in the equations (44),(45), and the other
terms can be removed while thex-component is big.

Let us introduce new variablesu,v by

x−x0 = v, u= y−y0.

For u,v one obtains

v′ =
k0

2
v2+u(1+(1+v)2), (49)

u′ = ε2(−(
k0

2
+u)(1+(1+v)2)+k1)) = ε2g(u,v). (50)

Let us consider for this system the Cauchy problem with initial data

v(0) = v0, u(0) = u0. (51)
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Lemma 3.3 Consider the Cauchy problem (49), (50) and (51) under assumptions that

u0 = κ > 0, |v0|< δ5,

and
k1 > k0, (52)

whereδ0,δ5 are small enough (but independent onε). Let A be a large positive number independent of
ε . Then within some interval t∈ (τ0(δ5,k0,k1,A),τ1(δ5,k0,k1,A)) one has

u(t)> 0, v(t)≥ A, v(τ0) = A. (53)

This result can be reinforced. Actually,x(t) attains values of the orderO(ε−2).

Lemma 3.4 Assume
x(t1) = A>> 1, y(t1)≥ k0/2. (54)

Then

x(t) ≥ (A−1− 1
2

σ t)−1, (55)

y(t)≥ σ , (56)

for σ ,A such that
σA> 2k0, σ > k0exp(−2σ−1), (57)

and t such that

(A−1− 1
2

σ t)≥ ε2. (58)

4 Conclusion

We showed that tropical ideas can be usefully employed to reduce and hybridize polynomial or rational
dynamical systems occurring in modelling the molecular machinery of the cell cycle. The main idea
consists in keeping only the dominant monomial terms in the right hand side of the ordinary differential
equations. Depending on the position in phase space, one should keep one, two, or more such terms.
The places where two or more monomial terms are equal form theso-called tropical manifolds. The one
term approximation is valid far from the tropical manifolds, whereas close to tropical manifolds several
dominating terms of opposite signs can equilibrate each other. These “tropical equilibrations” of the
dominating terms slow down the dynamics and produce attractive invariant manifolds.

The possible applications of this method are multiple. Generally, the method can be used to obtain
simplified models. In the example studied here, we have started with a five variables model, that has been
reduced to two variables and hybridized. The modes of the hybrid model have the simple structure of
monomial differential or differential-algebraic equations. Two general methods that we called complete
and two terms tropicalizations provide description of the modes and of the mode changes. However,
these general procedures may lead to inaccurate approximations when the full model does not satisfy
permanency globally. In such cases, more thorough analysisis needed. We have shown that the model of
embryonic cell cycle has essentially three modes with different timescales, namely slow accumulation of
cyclin, rapid activation of MPF and intermediately rapid degradation of cyclin and inactivation of MPF.
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Figure 1: Limit cycle behavior of the paradigmatic cell cycle model from [27]. (a) The three main
processes during the embryonic cell cycle are, in order of the timescales, fast increase ofy3 (active MPF,
triggering mitosis), slower decrease ofy3 and very slow increase ofy4 (inactive MPF). (b) Two invariant
manifolds corresponding to the two slow processes are closeto the tropical manifolds (blue lines) and
result from equilibration of the variables (equilibrationof y4 corresponds toM2 and equilibration ofy3

corresponds toM1). (c) A three modes hybrid approximation of the cell cycle (in red) compared to the
original limit cycle (black crosses).
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The fastest mode is described by monomial ODEs, whereas the less fast modes correspond to tropical
equilibrations and are described by differential-algebraic equations.

Several improvements and developments are needed in order to apply these methods at a larger
scale. The computation of tropical equilibrations suffersfrom combinatorial explosion. However, for the
biochemical network used as working example, the number of solutions seems to be very small compared
to the large combinatorics of monomial terms. There is hope,that once formulated in constraint logic
programming, the problem of equilibrations could be efficiently computed in practice as a constraint
satisfaction problem. Also, effective methods are needed to compute the transitions between modes.
The main difficulty here is related to walls (segments of the tropical manifolds) crossing. Near walls,
two or more terms are dominant. When these terms are equilibrated, orbits remain close to the walls
and are contained in invariant manifolds. The complete or two terms tropicalizations provide general
heuristic for mode transitions. These approximations mailfail close to walls. For instance, as we showed
in a previous paper [15], the complete tropicalization predicts sliding modes that evolve on the wall and
stay thus close to orbits of the full system. However, these sliding modes can be too long, leaving the
wall when the orbits of the full system are already far away. In order to get an accurate description of
the behavior near such walls we had to compute invariant manifolds. Although this is generally much
simpler than integrating the full set of equations, it couldbecome difficult for tropical equilibrations
involving more than two terms. Future work will be dedicatedto developing general methods for this
problem.
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One observes that
f (x) <−δ4 < 0, x∈ (X(y(0))+δ0,X+(y0)−δ0),

f (x)> δ4, x∈ (δ0,X(y0)−δ0),

and
f ′(x)|x=X(y0) <−δ5 < 0.

Therefore, if 0< x(0) <
k2

0+
√

k2
0−4y(0)2

2y(0) − δ0, then the solutionx(t) attains a smallδ - neighborhood of
X(y(0)) within a bounded time intervalT1(δ ,δ0,δ4):

|x(t,x0,y0)−X(y(0))|< δ , t = T1(δ ,δ0,δ4).

Within a smallδ - neighborhood ofX(y(0) we setu = x−X(y(0)) and then we can rewrite (59) as
follows :

u′ =−κu+h(u), |h(u)| <C1u2, u(T1) = δ . (60)

whereκ > 0 is independent ofδ . Then, ifδ is small enough, we have thatu(t) < δ for all t > T1 and

|u(t)| <C(T0)exp(−κt/2), t > T0.

Let us compare now the solutionx(t) of (59) and the corresponding solution ¯x(t,x0,y0) of (44) with the
same initial data. Forx(t)− x(0) = w one has, sincey(t)− y(0) < C(T0)ε2 on any bounded interval
t ∈ [0,T0],

wt = a(t)w+ ε2g(x, t,w),0< t ≤ T0.

with a smooth functiong, a(t) is bounded function. Now the Gronwall inequality implies

|w(t)|<C2(T0)ε2, t ∈ [0,T0].

Therefore, one has
|x̄(t,x0,y0)−X(y(t))|< δ , t = T2(δ ,δ0,δ4).

Since the functionX(y) defines a smooth, locally attracting (fory< y0) invariant manifold, this proves
our assertion. One can prove this in another, elementary way. Let us defineu= x̄−X(y). Then

u′ =−κ(t)u+h(u)+O(ε), |h(u)| <C1u2, u(T1) = δ , (61)

whereκ(t)> κ0 while y< y0−δ0. Again one hasu(t)< 2δ for t > T1 (while y< y0−δ0). Thus,

u′ ≤−κ0

2
u+O(ε)

that entails the need estimate 47.
Proof of Lemma 3.3Let us consider the Cauchy problem

w′ =
k0

2
w2, w(0) = v0 = v(0) (62)

It is clear, by the comparison principle, that

v(t) ≥ w(t)
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while u(t) > 0. Consequently, the assertionw(τ0) = A proves the lemma. Let us prove first that ifδ6 is
small enough (but independent onε), for somet = τ1 we have

v(τ1) = δ6. (63)

Without loss of generality, we assume that

v(t)< δ6, 0< t < τ1, v(τ1) = δ6. (64)

Let δ6 > 0 be small enough such that

−k0

2
(1+(1+δ6)

2)+k1 > 0. (65)

Such a choice ofδ6 is possible due to (52).
Assumeu(t) ≥ 0 within some time interval[0,τ2], andu(τ2) = 0 for someτ2 < τ1. Sinceu(0) = 0,

we haveτ2 > 0. We can suppose without loss of generality thatτ2 is the first moment, whereu(τ2) = 0.
Then

u′(τ2)≤ 0.

But then we obtain a contradiction with (65) att = τ2, since the right hand side of this equation is positive
at this time moment.

Therefore, we have shown thatu(t)> 0 for all t from [0,τ1] if v(t)< δ6 for sucht. Thenv(t)≥ w(t)
on this time interval. The functionw can be found, and an easy computation gives

w(t) = (w−1(0)−2k−1
0 t)−1) = (u0−2k−1

0 t). (66)

Assume thatv(t) < δ6 for all t. Then (66) holds for allt, butw(τ1)> δ6 for someτ1. We have obtained
a contradiction, thus (63) is proved.

Let us prove thatv(t) = A. Let us consider an interval[t1,T] such that

|v(t)| < A, t ∈ [t1,T], v(t1) = δ6. (67)

Then (65) implies

u′ ≤ ε2((
k0

2
+ |u|)(1+(1+A)2)+k1)), (68)

that gives, by the Gronwall lemma,

u(t)<C2u(0)exp(C1(A)ε2t). (69)

Within interval(t1,T] one has then
u(t) <C4κ , t ∈ [0,T]. (70)

and, therefore,

v′ ≥ k0

2
v2−C4κ , t ∈ [0,T]. (71)

Suppose that

C4κ <
k0

8
δ6.

Then (71) entails

v′ ≥ k0

4
v, t ∈ [0,T], (72)
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This gives

v(t)≥ δ6exp(
k0

4
(t − t1)).

This leads to a contradiction forT large enough (however, let us remark thatT is uniform inε).
Proof of Lemma 3.4
Remark: to satisfy (57) it suffices to setσ = 2k0A−1 with a largeA.
Suppose that either the estimate (55) (case A) or the second estimate (56) (case B) is violated at some

T but the both inequalities hold for allt1 ≤ t < T. We can sett1 = 0. Let us consider the case A. Since
(56) hold, one has

x′ ≥ σx2, x(0) = A, t ∈ [0,T].

This implies
x′/x2 = (−1/x)′ ≥ σ , x(0) = A.

Thus,
x≥ (A−1−σ t)−1.

For t = T this result gives a contradiction with (55).
Let us consider the case B. Since (55) hold, one has

y′(t)≤−ε2(y(A−1−σ t)−1−k1), y(0) = k0/2, t ∈ [0,T].

This implies

y(t)≤ k0

2
exp(−ε2

∫ t

0
(1+(A−1−σs)−2)ds)+ ε2k1

∫ t

0
exp(−ε2

∫ t

τ
(1+(A−1−σs)−2)ds)dτ .

for t ∈ [0,T]. Notice
∫

0
τ t(1+(A−1−σs)−2)ds= t − τ +σ−1((A−1−σ t)−1− (A−1−στ)−1).

Thus, for sufficiently smallε , taking into account (58) one hasy(T)≤ k0
exp(−2/σ). Under condition (57)

this result gives a contradiction with (56).
Proof of Theorem 2.7
i Suppose that the tropically truncated system (TTS) has a globally attracting compact invariant set

A . Let beΠ be an open neighborhood of this set. We can choose this neighborhood as a box that contains
A . Then, for all initial datax(0), the corresponding trajectoryx(t),x(0) lies in Π for all t > T0(x0,Π).
Therefore, our TTS is permanent. Here we do not use that the cycle (rest point) is hyperbolic.

ii Permanency of the initial system follows from hyperbolicity of A . Hyperbolic sets are persistent
(structurally stable) (Ruelle 1989). Since this set is globally attracting, all TTS is structurally stable (as a
dynamical system). This implies that the initial system hasa hyperbolic attractor close toA , since initial
system is a small perturbation of TTC inΠ .

iii If the setA is only locally attracting, the last assertion of Theorem follows from persistency of
hyperbolic sets.
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